Compound Marine Heatwaves and Acidity Extremes in the Southern Ocean

IF 5.5 2区 地球科学 Q1 ENVIRONMENTAL SCIENCES
Joel Wong, Matthias Münnich, Nicolas Gruber
{"title":"Compound Marine Heatwaves and Acidity Extremes in the Southern Ocean","authors":"Joel Wong,&nbsp;Matthias Münnich,&nbsp;Nicolas Gruber","doi":"10.1029/2025GB008630","DOIUrl":null,"url":null,"abstract":"<p>Compound extremes of temperature and acidity that extend over substantial fractions of the water column can be particularly damaging to marine organisms, as they experience not only additional stress by the potentially synergistic effects of these two stressors, but also a reduction in habitable vertical space. Here, we detect and analyze such column-compound extremes (CCX) in the Southern Ocean between 1980 and 2019, and characterize their duration, intensity, and spatial extent. To this end, we use daily output from a hindcast simulation of the Regional Ocean Modeling System (ROMS), coupled with the Biological Elemental Cycling (BEC) model. We first detect extremes in temperature and acidity ([<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>H</mi>\n <mo>+</mo>\n </msup>\n </mrow>\n <annotation> ${\\mathrm{H}}^{+}$</annotation>\n </semantics></math>]) within the top 300 m using a relative threshold of 95% and then identify CCX where conditions are extreme for both stressors for at least 50 m of the water column. When analyzed on a fixed baseline, positive trends in ocean warming and acidification caused CCX to last longer, intensify, and expand throughout the Southern Ocean. In the Antarctic zone, CCX expanded between 1980 and 2019 more than ten times in volume, lasted up to 120 days longer, and doubled in anomaly. Some of the largest and longest events occurred in Antarctic Marine Protected Areas (MPAs), covering more than 200,000 km<sup>2</sup> and persisting for over 500 days. CCX in the Subantarctic and Northern zones quadrupled in volume and increased by more than 30% in anomaly. Across the Southern Ocean, the increasing occurrence of CCX exacerbates the risks to marine ecosystems from warming and acidification.</p>","PeriodicalId":12729,"journal":{"name":"Global Biogeochemical Cycles","volume":"39 10","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2025GB008630","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Biogeochemical Cycles","FirstCategoryId":"89","ListUrlMain":"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025GB008630","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Compound extremes of temperature and acidity that extend over substantial fractions of the water column can be particularly damaging to marine organisms, as they experience not only additional stress by the potentially synergistic effects of these two stressors, but also a reduction in habitable vertical space. Here, we detect and analyze such column-compound extremes (CCX) in the Southern Ocean between 1980 and 2019, and characterize their duration, intensity, and spatial extent. To this end, we use daily output from a hindcast simulation of the Regional Ocean Modeling System (ROMS), coupled with the Biological Elemental Cycling (BEC) model. We first detect extremes in temperature and acidity ([ H + ${\mathrm{H}}^{+}$ ]) within the top 300 m using a relative threshold of 95% and then identify CCX where conditions are extreme for both stressors for at least 50 m of the water column. When analyzed on a fixed baseline, positive trends in ocean warming and acidification caused CCX to last longer, intensify, and expand throughout the Southern Ocean. In the Antarctic zone, CCX expanded between 1980 and 2019 more than ten times in volume, lasted up to 120 days longer, and doubled in anomaly. Some of the largest and longest events occurred in Antarctic Marine Protected Areas (MPAs), covering more than 200,000 km2 and persisting for over 500 days. CCX in the Subantarctic and Northern zones quadrupled in volume and increased by more than 30% in anomaly. Across the Southern Ocean, the increasing occurrence of CCX exacerbates the risks to marine ecosystems from warming and acidification.

Abstract Image

复合海洋热浪和极端酸度在南大洋
温度和酸度的复合极端延伸到水柱的大部分,对海洋生物尤其有害,因为它们不仅经历了这两个压力源潜在的协同效应带来的额外压力,而且还减少了可居住的垂直空间。本文对1980 - 2019年南大洋柱复合极端事件(CCX)进行了检测和分析,并对其持续时间、强度和空间范围进行了表征。为此,我们使用区域海洋模拟系统(ROMS)的每日后播模拟输出,并结合生物元素循环(BEC)模型。我们首先使用95%的相对阈值检测顶部300米内的极端温度和酸度([H + ${\ mathm {H}}^{+}$]),然后识别CCX,其中至少50米的水柱中两个压力源的条件都是极端的。当在固定基线上分析时,海洋变暖和酸化的积极趋势导致CCX在整个南大洋持续更长时间、加剧和扩大。在南极区,CCX在1980年至2019年间体积扩大了10倍以上,持续时间延长了120天,异常量增加了一倍。一些规模最大、持续时间最长的事件发生在南极海洋保护区(MPAs),覆盖面积超过20万平方公里,持续时间超过500天。亚南极带和北部带的CCX体积增加了四倍,异常增加了30%以上。在整个南大洋,CCX的增加加剧了海洋生态系统因变暖和酸化而面临的风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Global Biogeochemical Cycles
Global Biogeochemical Cycles 环境科学-地球科学综合
CiteScore
8.90
自引率
7.70%
发文量
141
审稿时长
8-16 weeks
期刊介绍: Global Biogeochemical Cycles (GBC) features research on regional to global biogeochemical interactions, as well as more local studies that demonstrate fundamental implications for biogeochemical processing at regional or global scales. Published papers draw on a wide array of methods and knowledge and extend in time from the deep geologic past to recent historical and potential future interactions. This broad scope includes studies that elucidate human activities as interactive components of biogeochemical cycles and physical Earth Systems including climate. Authors are required to make their work accessible to a broad interdisciplinary range of scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信