Crystallite-engineered NiO nanoparticles via co-precipitation for high-performance ethanol gas sensing

IF 2.8 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Rayees Ahmad Parry, Masroor Ahmad Bhat, Sadaf Jamal Gilani, Awdhesh Kumar Mishra, Nageena Parveen, Sajad Ahmad Dar, N.K Gaur, Arshid Mir
{"title":"Crystallite-engineered NiO nanoparticles via co-precipitation for high-performance ethanol gas sensing","authors":"Rayees Ahmad Parry,&nbsp;Masroor Ahmad Bhat,&nbsp;Sadaf Jamal Gilani,&nbsp;Awdhesh Kumar Mishra,&nbsp;Nageena Parveen,&nbsp;Sajad Ahmad Dar,&nbsp;N.K Gaur,&nbsp;Arshid Mir","doi":"10.1007/s00339-025-09002-y","DOIUrl":null,"url":null,"abstract":"<div><p>Nickel oxide (NiO) nanoparticles, noted for their high catalytic activity, chemical stability, and low cost, were synthesized via a simple and scalable co-precipitation method. This approach provides advantages such as operational simplicity, environmental compatibility, and suitability for large-scale production. X-ray diffraction (XRD) confirmed the formation of a cubic crystal structure, with crystallite sizes estimated using the Scherrer, Williamson–Hall, and Modified Debye–Scherrer models. Fourier-transform infrared (FTIR) spectroscopy verified the presence of NiO and associated functional groups. SEM/EDX analysis revealed a non-agglomerated morphology with uniform elemental distribution, while Raman spectroscopy identified surface optical (SO) phonon and magnon modes that varied with crystallite size. TEM images showed irregular aggregates with particle sizes ranging from 30 to 80 nm. X-ray photoelectron spectroscopy (XPS) confirmed Ni²⁺ and O²⁻ states with binding energies of 854.12 eV and 529.22 eV, respectively. Thermogravimetric and differential thermal analyses (TGA-DTA) demonstrated good thermal stability and favorable phase-formation behavior. Gas-sensing studies revealed excellent ethanol sensitivity, with the highest response at 100 ppm. Given ethanol’s importance in environmental monitoring, industrial safety, and health protection, these results indicate that co-precipitated NiO nanoparticles are promising candidates for low-cost, high-performance ethanol gas sensors.</p></div>","PeriodicalId":473,"journal":{"name":"Applied Physics A","volume":"131 11","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics A","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00339-025-09002-y","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Nickel oxide (NiO) nanoparticles, noted for their high catalytic activity, chemical stability, and low cost, were synthesized via a simple and scalable co-precipitation method. This approach provides advantages such as operational simplicity, environmental compatibility, and suitability for large-scale production. X-ray diffraction (XRD) confirmed the formation of a cubic crystal structure, with crystallite sizes estimated using the Scherrer, Williamson–Hall, and Modified Debye–Scherrer models. Fourier-transform infrared (FTIR) spectroscopy verified the presence of NiO and associated functional groups. SEM/EDX analysis revealed a non-agglomerated morphology with uniform elemental distribution, while Raman spectroscopy identified surface optical (SO) phonon and magnon modes that varied with crystallite size. TEM images showed irregular aggregates with particle sizes ranging from 30 to 80 nm. X-ray photoelectron spectroscopy (XPS) confirmed Ni²⁺ and O²⁻ states with binding energies of 854.12 eV and 529.22 eV, respectively. Thermogravimetric and differential thermal analyses (TGA-DTA) demonstrated good thermal stability and favorable phase-formation behavior. Gas-sensing studies revealed excellent ethanol sensitivity, with the highest response at 100 ppm. Given ethanol’s importance in environmental monitoring, industrial safety, and health protection, these results indicate that co-precipitated NiO nanoparticles are promising candidates for low-cost, high-performance ethanol gas sensors.

Abstract Image

通过共沉淀法实现高性能乙醇气体传感的结晶工程NiO纳米颗粒
摘要采用一种简单、可扩展的共沉淀法合成了具有高催化活性、化学稳定性和低成本的氧化镍纳米颗粒。这种方法具有操作简单、环境兼容和适合大规模生产等优点。x射线衍射(XRD)证实了立方晶体结构的形成,并用Scherrer、Williamson-Hall和Modified Debye-Scherrer模型估计了晶体尺寸。傅里叶变换红外光谱(FTIR)证实了NiO和相关官能团的存在。SEM/EDX分析显示其非凝聚形态,元素分布均匀,而拉曼光谱鉴定出表面光学(SO)声子和磁振子模式随晶粒尺寸的变化而变化。TEM图像显示粒径在30 ~ 80 nm之间的不规则聚集体。x射线光电子能谱(XPS)证实Ni 2⁺和O 2⁻的结合能分别为854.12 eV和529.22 eV。热重分析和差热分析(TGA-DTA)显示了良好的热稳定性和良好的相形成行为。气体传感研究表明,乙醇具有优异的敏感性,在100 ppm时具有最高的响应。考虑到乙醇在环境监测、工业安全和健康保护方面的重要性,这些结果表明共沉淀NiO纳米颗粒是低成本、高性能乙醇气体传感器的有希望的候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Physics A
Applied Physics A 工程技术-材料科学:综合
CiteScore
4.80
自引率
7.40%
发文量
964
审稿时长
38 days
期刊介绍: Applied Physics A publishes experimental and theoretical investigations in applied physics as regular articles, rapid communications, and invited papers. The distinguished 30-member Board of Editors reflects the interdisciplinary approach of the journal and ensures the highest quality of peer review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信