Correlations in Uniform Spanning Trees: a Fermionic Approach

IF 1.2 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Alan Rapoport
{"title":"Correlations in Uniform Spanning Trees: a Fermionic Approach","authors":"Alan Rapoport","doi":"10.1007/s10955-025-03510-0","DOIUrl":null,"url":null,"abstract":"<div><p>In the present paper we establish a clear correspondence between probabilities of certain edges belonging to a realization of the <i>uniform spanning tree</i> (UST), and the states of a <i>fermionic Gaussian free field</i>. Namely, we express the probabilities of given edges belonging or not to the UST in terms of fermionic Gaussian expectations. This allows us to explicitly calculate joint probability mass functions of the degree of the UST on a general finite graph, as well as obtain their scaling limits for certain regular lattices.</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":"192 11","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10955-025-03510-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-025-03510-0","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In the present paper we establish a clear correspondence between probabilities of certain edges belonging to a realization of the uniform spanning tree (UST), and the states of a fermionic Gaussian free field. Namely, we express the probabilities of given edges belonging or not to the UST in terms of fermionic Gaussian expectations. This allows us to explicitly calculate joint probability mass functions of the degree of the UST on a general finite graph, as well as obtain their scaling limits for certain regular lattices.

一致生成树中的相关性:费米子方法
在本文中,我们建立了属于一致生成树(UST)实现的某些边的概率与费米子高斯自由场的状态之间的明确对应关系。也就是说,我们用费米子高斯期望来表示给定边属于或不属于UST的概率。这使我们能够在一般有限图上显式地计算UST度的联合概率质量函数,并获得它们对某些规则格的缩放极限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Statistical Physics
Journal of Statistical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
12.50%
发文量
152
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信