{"title":"Citric acid-driven interface engineering of BiVO4 photoanodes for enhanced photoelectrochemical performance","authors":"Xingsheng Hu, Bing-Hao Wang, Xiong Wang, Chao Peng, Sheng Tian, Huijuan Wang, Mingming Yin, Yang Li, Yuyun Liu, Yutong Dai, Weifan Shao, Lang Chen, Shuang-Feng Yin","doi":"10.1007/s11705-025-2617-3","DOIUrl":null,"url":null,"abstract":"<div><p>BiVO<sub>4</sub>, with its moderate band gap (∼2.4 eV) and visible light absorption properties, is considered a promising photoanode material. However, its photoelectrochemical performance is hindered by intrinsic defects such as poor charge carrier transport and rapid electron-hole recombination, resulting in a significant gap between its practical and theoretical photocurrent densities. In this work, we present a simple surface reconstruction method by adding citric acid to Na<sub>2</sub>SO<sub>4</sub> electrolyte. Citric acid’s multidentate structure strongly chelates the metal-sites on the BiVO<sub>4</sub> surface, triggering lattice reconstruction through intense interactions. This surface modification not only prolongs hole lifetime but also acts as an interface modifier, leaving a carboxyl-rich, superhydrophilic interface on the BiVO<sub>4</sub> surface after the reaction (contact angle ≈ 0°). The multi-dimensional optimization synergistically improves BiVO<sub>4</sub>’s photoelectrochemical performance, achieving an excellent photocurrent density of 6.8 mA·cm<sup>−2</sup> under AM 1.5G irradiation. Importantly, our findings reveal a three-pronged synergy achieved with inexpensive citric acid: structural reconfiguration, electronic tuning, and extreme wettability, which offered a streamlined route for solar fuel production without solid co-catalysts.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"19 11","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Chemical Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11705-025-2617-3","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
BiVO4, with its moderate band gap (∼2.4 eV) and visible light absorption properties, is considered a promising photoanode material. However, its photoelectrochemical performance is hindered by intrinsic defects such as poor charge carrier transport and rapid electron-hole recombination, resulting in a significant gap between its practical and theoretical photocurrent densities. In this work, we present a simple surface reconstruction method by adding citric acid to Na2SO4 electrolyte. Citric acid’s multidentate structure strongly chelates the metal-sites on the BiVO4 surface, triggering lattice reconstruction through intense interactions. This surface modification not only prolongs hole lifetime but also acts as an interface modifier, leaving a carboxyl-rich, superhydrophilic interface on the BiVO4 surface after the reaction (contact angle ≈ 0°). The multi-dimensional optimization synergistically improves BiVO4’s photoelectrochemical performance, achieving an excellent photocurrent density of 6.8 mA·cm−2 under AM 1.5G irradiation. Importantly, our findings reveal a three-pronged synergy achieved with inexpensive citric acid: structural reconfiguration, electronic tuning, and extreme wettability, which offered a streamlined route for solar fuel production without solid co-catalysts.
期刊介绍:
Frontiers of Chemical Science and Engineering presents the latest developments in chemical science and engineering, emphasizing emerging and multidisciplinary fields and international trends in research and development. The journal promotes communication and exchange between scientists all over the world. The contents include original reviews, research papers and short communications. Coverage includes catalysis and reaction engineering, clean energy, functional material, nanotechnology and nanoscience, biomaterials and biotechnology, particle technology and multiphase processing, separation science and technology, sustainable technologies and green processing.