Xinkai Bian, Chaowei Jiang, Yang Wang, Peng Zou, Xueshang Feng, Pingbing Zuo, Yi Wang
{"title":"The Role of Photospheric Magnetic Flux Diffusion in Initiation of Solar Eruptions","authors":"Xinkai Bian, Chaowei Jiang, Yang Wang, Peng Zou, Xueshang Feng, Pingbing Zuo, Yi Wang","doi":"10.1007/s11207-025-02557-2","DOIUrl":null,"url":null,"abstract":"<div><p>Solar eruptions may occur at different evolutionary stages of active regions, during which the photospheric motions manifest in various forms, including flux emergence, sunspot rotation, shearing, converging, and magnetic flux diffusion. However, it remains unclear what the specific roles played by these different motions are in leading to eruptions. Here, we employ high resolution magnetohydrodynamic simulations to demonstrate how solar eruptions can be initiated in a single bipolar configuration, driven by first shearing and then flux diffusion at the bottom surface. Flux diffusion disperses the photospheric magnetic flux, driving portions of it toward the polarity inversion line (PIL). This process leads to the expansion of core field, enhancing the pinching effect to form the current sheet. When magnetic reconnection occurs within this current sheet, the eruption is initiated, characterized by a rapid release of magnetic energy and accompanied by the formation of a erupting flux rope. Additionally, flux diffusion contributes to magnetic cancellation near the PIL, leading to the formation of a weakly twisted magnetic flux rope prior to the eruption. However, this pre-existing flux rope plays a limited role in eruption initiation, as its spatial position remains largely unchanged throughout the eruption. These findings demonstrate that the primary role of flux diffusion is to facilitate current sheet formation, highlighting the critical role of current sheet formation in eruption initiation.</p></div>","PeriodicalId":777,"journal":{"name":"Solar Physics","volume":"300 10","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11207-025-02557-2","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Solar eruptions may occur at different evolutionary stages of active regions, during which the photospheric motions manifest in various forms, including flux emergence, sunspot rotation, shearing, converging, and magnetic flux diffusion. However, it remains unclear what the specific roles played by these different motions are in leading to eruptions. Here, we employ high resolution magnetohydrodynamic simulations to demonstrate how solar eruptions can be initiated in a single bipolar configuration, driven by first shearing and then flux diffusion at the bottom surface. Flux diffusion disperses the photospheric magnetic flux, driving portions of it toward the polarity inversion line (PIL). This process leads to the expansion of core field, enhancing the pinching effect to form the current sheet. When magnetic reconnection occurs within this current sheet, the eruption is initiated, characterized by a rapid release of magnetic energy and accompanied by the formation of a erupting flux rope. Additionally, flux diffusion contributes to magnetic cancellation near the PIL, leading to the formation of a weakly twisted magnetic flux rope prior to the eruption. However, this pre-existing flux rope plays a limited role in eruption initiation, as its spatial position remains largely unchanged throughout the eruption. These findings demonstrate that the primary role of flux diffusion is to facilitate current sheet formation, highlighting the critical role of current sheet formation in eruption initiation.
期刊介绍:
Solar Physics was founded in 1967 and is the principal journal for the publication of the results of fundamental research on the Sun. The journal treats all aspects of solar physics, ranging from the internal structure of the Sun and its evolution to the outer corona and solar wind in interplanetary space. Papers on solar-terrestrial physics and on stellar research are also published when their results have a direct bearing on our understanding of the Sun.