Four-parameter fractional thermo-viscoelastic model to stress analysis of single stepped-lap adhesive joints of FGM adherends

IF 2.3 4区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
Mehdi Veisytabar, Arash Reza, Younes Shekari
{"title":"Four-parameter fractional thermo-viscoelastic model to stress analysis of single stepped-lap adhesive joints of FGM adherends","authors":"Mehdi Veisytabar,&nbsp;Arash Reza,&nbsp;Younes Shekari","doi":"10.1007/s11043-025-09832-6","DOIUrl":null,"url":null,"abstract":"<div><p>This paper develops an analytical framework to investigate the thermo-viscoelastic stress distribution in adhesively bonded single stepped-lap (SSL) joints with functionally graded (FG) adherends subjected to tensile loading. The adhesive layer (AL) is modeled by the fractional Zener formulation within a four-parameter fractional thermo-viscoelastic framework, capturing its linear viscoelastic behavior. The FG adherends, consisting of nickel–aluminum oxide (Ni–Al<sub>2</sub>O<sub>3</sub>), are described using Timoshenko beam theory. Governing differential equations are derived from constitutive, equilibrium, and compatibility conditions at the reference temperature and subsequently extended to arbitrary temperatures through thermoelastic relations for the adherends and the time–temperature superposition principle for the adhesive. These equations are solved in the Laplace domain and inverted to the time domain using the Gaver–Stehfest algorithm. The proposed model provides a time- and temperature-dependent prediction of axial, shear, and peel stresses at any point within the adhesive layer or interfaces. Validation against finite element simulations in ANSYS Workbench demonstrates excellent agreement. Results reveal that temperature variations strongly influence the stress field, while elevated temperatures significantly accelerate the relaxation and stabilization of reduced stress components.</p></div>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"29 4","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Time-Dependent Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11043-025-09832-6","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

This paper develops an analytical framework to investigate the thermo-viscoelastic stress distribution in adhesively bonded single stepped-lap (SSL) joints with functionally graded (FG) adherends subjected to tensile loading. The adhesive layer (AL) is modeled by the fractional Zener formulation within a four-parameter fractional thermo-viscoelastic framework, capturing its linear viscoelastic behavior. The FG adherends, consisting of nickel–aluminum oxide (Ni–Al2O3), are described using Timoshenko beam theory. Governing differential equations are derived from constitutive, equilibrium, and compatibility conditions at the reference temperature and subsequently extended to arbitrary temperatures through thermoelastic relations for the adherends and the time–temperature superposition principle for the adhesive. These equations are solved in the Laplace domain and inverted to the time domain using the Gaver–Stehfest algorithm. The proposed model provides a time- and temperature-dependent prediction of axial, shear, and peel stresses at any point within the adhesive layer or interfaces. Validation against finite element simulations in ANSYS Workbench demonstrates excellent agreement. Results reveal that temperature variations strongly influence the stress field, while elevated temperatures significantly accelerate the relaxation and stabilization of reduced stress components.

FGM材料单阶搭接接头应力分析的四参数分数热粘弹性模型
本文建立了一个分析框架来研究具有功能梯度(FG)粘结剂的单阶梯搭接(SSL)粘结接头在拉伸载荷作用下的热粘弹性应力分布。粘接层(AL)通过分数齐纳公式在四参数分数热粘弹性框架内建模,捕获其线性粘弹性行为。FG附体由镍铝氧化物(Ni-Al2O3)组成,用Timoshenko光束理论描述。控制微分方程由参考温度下的本构、平衡和相容性条件推导而来,然后通过黏合剂的热弹性关系和黏合剂的时间-温度叠加原理扩展到任意温度。这些方程在拉普拉斯域中求解,并利用Gaver-Stehfest算法反演到时域。所提出的模型提供了一个时间和温度依赖的轴向,剪切和剥离应力在粘接层或界面内的任何点的预测。在ANSYS Workbench中进行有限元仿真验证,结果表明两者具有良好的一致性。结果表明,温度变化对应力场的影响较大,而温度升高会显著加速应力构件的松弛和稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mechanics of Time-Dependent Materials
Mechanics of Time-Dependent Materials 工程技术-材料科学:表征与测试
CiteScore
4.90
自引率
8.00%
发文量
47
审稿时长
>12 weeks
期刊介绍: Mechanics of Time-Dependent Materials accepts contributions dealing with the time-dependent mechanical properties of solid polymers, metals, ceramics, concrete, wood, or their composites. It is recognized that certain materials can be in the melt state as function of temperature and/or pressure. Contributions concerned with fundamental issues relating to processing and melt-to-solid transition behaviour are welcome, as are contributions addressing time-dependent failure and fracture phenomena. Manuscripts addressing environmental issues will be considered if they relate to time-dependent mechanical properties. The journal promotes the transfer of knowledge between various disciplines that deal with the properties of time-dependent solid materials but approach these from different angles. Among these disciplines are: Mechanical Engineering, Aerospace Engineering, Chemical Engineering, Rheology, Materials Science, Polymer Physics, Design, and others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信