The urban forest at risk: unveiling windstorm-induced tree fall patterns through spatial and machine learning analyses in a medium-large city in Southern Brazil

IF 2.1 3区 农林科学 Q2 FORESTRY
Trees Pub Date : 2025-10-11 DOI:10.1007/s00468-025-02678-y
Diogo Francisco Rossoni, Ícaro da Costa Francisco, Clayton Cavalcante da Broi Junior, Victória Sotti Batista, Rafaela Lucca, Maurício Bonesso Sampaio
{"title":"The urban forest at risk: unveiling windstorm-induced tree fall patterns through spatial and machine learning analyses in a medium-large city in Southern Brazil","authors":"Diogo Francisco Rossoni,&nbsp;Ícaro da Costa Francisco,&nbsp;Clayton Cavalcante da Broi Junior,&nbsp;Victória Sotti Batista,&nbsp;Rafaela Lucca,&nbsp;Maurício Bonesso Sampaio","doi":"10.1007/s00468-025-02678-y","DOIUrl":null,"url":null,"abstract":"<div><h3>Key message</h3><p>Our study reveals spatial patterns and meteorological drivers of urban tree falls, enabling enhanced urban tree risk management.</p><h3>Abstract</h3><p>Urban forestry plays a crucial role in maintaining the safety and resilience of urban environments yet understanding the spatial dynamics and underlying factors of tree fall incidents remains a complex challenge. In this study, we conducted a comprehensive analysis of tree fall incidents in Maringá, Paraná, Brazil, from 2015 to 2021, using kernel density estimation, inhomogeneous L function analysis, and regression tree modeling. Our findings reveal intriguing spatial patterns, with higher concentrations of incidents in the northern and northeastern regions of the city. Moreover, we identified dynamic changes in spatial distributions over time, emphasizing the need for proactive urban planning and risk management strategies. Regression tree analysis highlighted meteorological factors as significant contributors to tree falls, providing actionable insights for risk mitigation efforts. Overall, our study contributes to a better understanding of the spatial dynamics of tree fall incidents and advocates for standardized data collection methods and the development of tools to enhance urban forestry management and promote safer urban environments.</p></div>","PeriodicalId":805,"journal":{"name":"Trees","volume":"39 6","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trees","FirstCategoryId":"2","ListUrlMain":"https://link.springer.com/article/10.1007/s00468-025-02678-y","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

Key message

Our study reveals spatial patterns and meteorological drivers of urban tree falls, enabling enhanced urban tree risk management.

Abstract

Urban forestry plays a crucial role in maintaining the safety and resilience of urban environments yet understanding the spatial dynamics and underlying factors of tree fall incidents remains a complex challenge. In this study, we conducted a comprehensive analysis of tree fall incidents in Maringá, Paraná, Brazil, from 2015 to 2021, using kernel density estimation, inhomogeneous L function analysis, and regression tree modeling. Our findings reveal intriguing spatial patterns, with higher concentrations of incidents in the northern and northeastern regions of the city. Moreover, we identified dynamic changes in spatial distributions over time, emphasizing the need for proactive urban planning and risk management strategies. Regression tree analysis highlighted meteorological factors as significant contributors to tree falls, providing actionable insights for risk mitigation efforts. Overall, our study contributes to a better understanding of the spatial dynamics of tree fall incidents and advocates for standardized data collection methods and the development of tools to enhance urban forestry management and promote safer urban environments.

Abstract Image

城市森林处于危险之中:通过空间和机器学习分析,揭示了巴西南部一个中型城市风暴引起的树木砍伐模式
我们的研究揭示了城市树木砍伐的空间格局和气象驱动因素,从而加强了城市树木风险管理。城市林业在维护城市环境的安全和恢复力方面发挥着至关重要的作用,但了解树木砍伐事件的空间动态及其潜在因素仍然是一个复杂的挑战。在这项研究中,我们使用核密度估计、非齐次L函数分析和回归树模型对2015年至2021年在巴西帕拉纳岛 maring发生的树木倒下事件进行了综合分析。我们的发现揭示了有趣的空间模式,事件在城市的北部和东北部地区更为集中。此外,我们确定了空间分布随时间的动态变化,强调了积极的城市规划和风险管理策略的必要性。回归树分析强调了气象因素是导致树木倒下的重要因素,为减轻风险工作提供了可行的见解。总的来说,我们的研究有助于更好地理解树木砍伐事件的空间动态,并倡导标准化的数据收集方法和开发工具,以加强城市林业管理,促进更安全的城市环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Trees
Trees 农林科学-林学
CiteScore
4.50
自引率
4.30%
发文量
113
审稿时长
3.8 months
期刊介绍: Trees - Structure and Function publishes original articles on the physiology, biochemistry, functional anatomy, structure and ecology of trees and other woody plants. Also presented are articles concerned with pathology and technological problems, when they contribute to the basic understanding of structure and function of trees. In addition to original articles and short communications, the journal publishes reviews on selected topics concerning the structure and function of trees.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信