Zinc-integrated PLGA/chitosan nanofiber mesh: a platform for wound healing applications

IF 4.6 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
RSC Advances Pub Date : 2025-10-16 DOI:10.1039/D5RA03639A
Dekonti Davies, Alexis Moody, Sita Shrestha, Reedwan Bin Zafar Auniq, Kiran Subedi, Jagannathan Sankar and Narayan Bhattarai
{"title":"Zinc-integrated PLGA/chitosan nanofiber mesh: a platform for wound healing applications","authors":"Dekonti Davies, Alexis Moody, Sita Shrestha, Reedwan Bin Zafar Auniq, Kiran Subedi, Jagannathan Sankar and Narayan Bhattarai","doi":"10.1039/D5RA03639A","DOIUrl":null,"url":null,"abstract":"<p >Non-healing wounds present significant challenges to patients and healthcare systems, often causing infections and chronic pain due to impaired self-regeneration. Zinc (Zn) shows promise in biomedical applications, particularly wound healing, as its degradation releases Zn<small><sup>2+</sup></small> ions that enhance cell proliferation, angiogenesis, and antimicrobial activity. These properties make Zn ideal for bioresorbable wound dressings, scaffolds, and tissue repair coatings. This study aimed to incorporate metallic Zn particles into electrospun nanofiber meshes of poly(<small>D</small>,<small>L</small>-lactic-<em>co</em>-glycolic acid) (PLGA) and PLGA/chitosan (PLGA–CH) and evaluate their wound healing potential. We electrospun polymer–Zn nanoparticle mixtures to fabricate composite fibrous meshes. We assessed Zn's impact on scaffolds' physical, chemical, and biological properties, including fiber morphology, chemical composition, mechanical strength, and Zn<small><sup>2+</sup></small> release. Results showed Zn influences PLGA's physical properties without altering chemical composition. Zn-containing meshes released Zn<small><sup>2+</sup></small> ions in a dose-dependent manner. Biological evaluations using 3T3 fibroblasts over three days revealed fiber composition-dependent cytotoxicity, with certain compositions supporting cell proliferation, suggesting potential for tissue remodelling. Given PLGA and chitosan's biocompatibility and biodegradability, incorporating Zn into composite nanofiber meshes presents a promising approach for wound healing and tissue engineering applications.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 46","pages":" 38846-38864"},"PeriodicalIF":4.6000,"publicationDate":"2025-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d5ra03639a?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d5ra03639a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Non-healing wounds present significant challenges to patients and healthcare systems, often causing infections and chronic pain due to impaired self-regeneration. Zinc (Zn) shows promise in biomedical applications, particularly wound healing, as its degradation releases Zn2+ ions that enhance cell proliferation, angiogenesis, and antimicrobial activity. These properties make Zn ideal for bioresorbable wound dressings, scaffolds, and tissue repair coatings. This study aimed to incorporate metallic Zn particles into electrospun nanofiber meshes of poly(D,L-lactic-co-glycolic acid) (PLGA) and PLGA/chitosan (PLGA–CH) and evaluate their wound healing potential. We electrospun polymer–Zn nanoparticle mixtures to fabricate composite fibrous meshes. We assessed Zn's impact on scaffolds' physical, chemical, and biological properties, including fiber morphology, chemical composition, mechanical strength, and Zn2+ release. Results showed Zn influences PLGA's physical properties without altering chemical composition. Zn-containing meshes released Zn2+ ions in a dose-dependent manner. Biological evaluations using 3T3 fibroblasts over three days revealed fiber composition-dependent cytotoxicity, with certain compositions supporting cell proliferation, suggesting potential for tissue remodelling. Given PLGA and chitosan's biocompatibility and biodegradability, incorporating Zn into composite nanofiber meshes presents a promising approach for wound healing and tissue engineering applications.

Abstract Image

锌集成PLGA/壳聚糖纳米纤维网:伤口愈合应用平台
不愈合的伤口给患者和医疗保健系统带来了重大挑战,由于自我再生受损,往往会引起感染和慢性疼痛。锌(Zn)在生物医学应用,特别是伤口愈合方面显示出前景,因为其降解释放的Zn2+离子可以促进细胞增殖、血管生成和抗菌活性。这些特性使锌成为生物可吸收伤口敷料、支架和组织修复涂层的理想材料。本研究旨在将金属锌颗粒掺入聚(D, l -乳酸-羟基乙酸)(PLGA)和PLGA/壳聚糖(PLGA - ch)静电纺纳米纤维网中,并评估其伤口愈合潜力。我们电纺聚合物-锌纳米粒子混合物,制备复合纤维网。我们评估了Zn对支架物理、化学和生物性能的影响,包括纤维形态、化学成分、机械强度和Zn2+释放。结果表明,Zn对PLGA的物理性质有影响,但不会改变其化学组成。含锌网以剂量依赖的方式释放Zn2+离子。使用3T3成纤维细胞进行为期三天的生物学评估,发现纤维成分依赖于细胞毒性,某些成分支持细胞增殖,表明组织重塑的潜力。考虑到聚乳酸和壳聚糖的生物相容性和生物降解性,将锌加入复合纳米纤维网中是一种很有前景的伤口愈合和组织工程应用方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
RSC Advances
RSC Advances chemical sciences-
CiteScore
7.50
自引率
2.60%
发文量
3116
审稿时长
1.6 months
期刊介绍: An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信