OWP-IMU: An RSS-Based Optical Wireless and IMU Indoor Positioning Dataset

IF 5.3 2区 计算机科学 Q2 ROBOTICS
Fan Wu;Jorik De Bruycker;Daan Delabie;Nobby Stevens;François Rottenberg;Lieven De Strycker
{"title":"OWP-IMU: An RSS-Based Optical Wireless and IMU Indoor Positioning Dataset","authors":"Fan Wu;Jorik De Bruycker;Daan Delabie;Nobby Stevens;François Rottenberg;Lieven De Strycker","doi":"10.1109/LRA.2025.3615029","DOIUrl":null,"url":null,"abstract":"Received signal strength (RSS)-based optical wireless positioning (OWP) systems are becoming popular for indoor localization because they are low-cost and accurate. However, few open-source datasets are available to test and analyze RSS-based OWP systems. In this letter, we collected RSS values at a sampling frequency of <inline-formula><tex-math>$27 \\,\\mathrm{Hz}$</tex-math></inline-formula>, inertial measurement unit (IMU) at a sampling frequency of <inline-formula><tex-math>$200 \\,\\mathrm{Hz}$</tex-math></inline-formula> and the ground truth at a sampling frequency of <inline-formula><tex-math>$160 \\,\\mathrm{Hz}$</tex-math></inline-formula> in three indoor environments. The first scenario is obstacle-free, the second contains a metal column obstacle, and the third contains a letter rectangular obstacle, with both obstacles representing different non-line-of-sight (NLOS) scenarios. We recorded data with a vehicle at three different speeds (low, medium and high). The dataset includes over <inline-formula><tex-math>$160 \\,{\\mathrm{k}}$</tex-math></inline-formula> data points and covers more than <inline-formula><tex-math>$110 \\,\\min$</tex-math></inline-formula>. We also provide benchmark tests to show localization performance using only RSS-based OWP and improve accuracy by combining IMU data via extended kalman filter or transformer. The dataset OWP-IMU and accompanying benchmark results are open source to support further research on indoor localization methods.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 11","pages":"12103-12108"},"PeriodicalIF":5.3000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11180887/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Received signal strength (RSS)-based optical wireless positioning (OWP) systems are becoming popular for indoor localization because they are low-cost and accurate. However, few open-source datasets are available to test and analyze RSS-based OWP systems. In this letter, we collected RSS values at a sampling frequency of $27 \,\mathrm{Hz}$, inertial measurement unit (IMU) at a sampling frequency of $200 \,\mathrm{Hz}$ and the ground truth at a sampling frequency of $160 \,\mathrm{Hz}$ in three indoor environments. The first scenario is obstacle-free, the second contains a metal column obstacle, and the third contains a letter rectangular obstacle, with both obstacles representing different non-line-of-sight (NLOS) scenarios. We recorded data with a vehicle at three different speeds (low, medium and high). The dataset includes over $160 \,{\mathrm{k}}$ data points and covers more than $110 \,\min$. We also provide benchmark tests to show localization performance using only RSS-based OWP and improve accuracy by combining IMU data via extended kalman filter or transformer. The dataset OWP-IMU and accompanying benchmark results are open source to support further research on indoor localization methods.
OWP-IMU:基于rss的光无线和IMU室内定位数据集
基于接收信号强度(RSS)的光学无线定位(OWP)系统由于其低成本和准确,在室内定位中越来越受欢迎。然而,很少有开源数据集可用于测试和分析基于rss的OWP系统。在这封信中,我们在三个室内环境中收集了采样频率为$27 \ \ mathm {Hz}$的RSS值,采样频率为$200 \ \ mathm {Hz}$的惯性测量单元(IMU)和采样频率为$160 \ \ mathm {Hz}$的地面真值。第一个场景是无障碍的,第二个场景包含一个金属柱障碍物,第三个场景包含一个字母矩形障碍物,这两个障碍物代表不同的非视距(NLOS)场景。我们用一辆车以三种不同的速度(低、中、高)记录数据。数据集包括超过$160 \,{\ mathm {k}}$数据点,覆盖超过$110 \,\min$。我们还提供了基准测试,仅使用基于rss的OWP来显示定位性能,并通过扩展卡尔曼滤波器或变压器组合IMU数据来提高精度。数据集OWP-IMU和附带的基准结果是开源的,以支持室内定位方法的进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信