Huawei Jiang;Husna Mutahira;Shibo Wei;Mannan Saeed Muhammad
{"title":"ECG-Mamba: Cardiac Abnormality Classification With Non-Uniform-Mix Augmentation on 12-Lead ECGs","authors":"Huawei Jiang;Husna Mutahira;Shibo Wei;Mannan Saeed Muhammad","doi":"10.1109/JTEHM.2025.3613609","DOIUrl":null,"url":null,"abstract":"Objective: The detection of heart abnormalities using electrocardiograms (ECG) is a critical task in medical diagnostics. A lot of literature has utilized ResNet and Transformer architectures to detect heart disease based on ECG signals. Recently, a new class of algorithms has emerged, challenging these established methods. A selective state space model (SSM) called Mamba has exhibited promising potential as an alternative to Transformers due to its efficient handling of longer sequences. In this context, we propose a Mamba-based model for detecting heart abnormalities, named ECG-Mamba. Recognizing that common data augmentation methods such as MixUp and CutMix do not perform well with Mamba on ECG data, we introduce a data augmentation technique called non-uniform-mix to enhance the model’s performance.Methods and procedures: ECG-Mamba is based on Vision Mamba (Vim), a variant of Mamba that utilizes a bidirectional SSM, enhancing its capability to process ECG data effectively. To address the sensitivity of the Mamba model to noise and the lack of suitable data augmentation techniques, we propose a data augmentation algorithm that conservatively introduces data augmentation by performing non-uniform operations on the dataset across different epochs. Specifically, we apply MixUp to a portion of the dataset in different epochs.Results: Experimental results indicate that ECG-Mamba outperforms the best algorithms in the PhysioNet/Computing in Cardiology (CinC) Challenges of 2020 and 2021 based on the AUPRC and AUROC, specifically with ECG-Mamba achieving an AUPRC score 16.6% higher than the best algorithm in the PhysioNet/CinC Challenge 2021 on 12-lead ECGs, reaching 0.61. Moreover, with the proposed data augmentation method Non-Uniform-Mix, ECG-Mamba’s AUPRC reached 0.6271, representing a 2.8% improvement.Conclusion: The ECG-Mamba model, based on the SSM, demonstrates potential in detecting cardiac abnormalities from ECG data. Although the model surpasses existing algorithms, it exhibits sensitivity to noise, requiring careful data augmentation. The proposed conservative data augmentation technique addresses this challenge and improves the model’s performance, suggesting a promising direction for future research in ECG analysis using SSMs. The implementation is publicly available at <uri>https://huggingface.co/poult/ECGMambaVersionOfJTEHM2020-2021_final</uri>.Clinical and Translational Impact Statement: ECG-Mamba enhances heart abnormality detection, enabling early diagnosis and personalised treatment in resource-limited and telemedicine settings. Using real-world data from the PhysioNet/CinC Challenges 2020 and 2021, it accurately models multiple concurrent cardiac conditions, reflecting complex clinical scenarios. Its conservative Non-Uniform-Mix augmentation mitigates noise sensitivity, improving accuracy and reliability for seamless integration into clinical workflows, thus supporting evidence-based practice and addressing healthcare disparities.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"13 ","pages":"461-470"},"PeriodicalIF":4.4000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11176036","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11176036/","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: The detection of heart abnormalities using electrocardiograms (ECG) is a critical task in medical diagnostics. A lot of literature has utilized ResNet and Transformer architectures to detect heart disease based on ECG signals. Recently, a new class of algorithms has emerged, challenging these established methods. A selective state space model (SSM) called Mamba has exhibited promising potential as an alternative to Transformers due to its efficient handling of longer sequences. In this context, we propose a Mamba-based model for detecting heart abnormalities, named ECG-Mamba. Recognizing that common data augmentation methods such as MixUp and CutMix do not perform well with Mamba on ECG data, we introduce a data augmentation technique called non-uniform-mix to enhance the model’s performance.Methods and procedures: ECG-Mamba is based on Vision Mamba (Vim), a variant of Mamba that utilizes a bidirectional SSM, enhancing its capability to process ECG data effectively. To address the sensitivity of the Mamba model to noise and the lack of suitable data augmentation techniques, we propose a data augmentation algorithm that conservatively introduces data augmentation by performing non-uniform operations on the dataset across different epochs. Specifically, we apply MixUp to a portion of the dataset in different epochs.Results: Experimental results indicate that ECG-Mamba outperforms the best algorithms in the PhysioNet/Computing in Cardiology (CinC) Challenges of 2020 and 2021 based on the AUPRC and AUROC, specifically with ECG-Mamba achieving an AUPRC score 16.6% higher than the best algorithm in the PhysioNet/CinC Challenge 2021 on 12-lead ECGs, reaching 0.61. Moreover, with the proposed data augmentation method Non-Uniform-Mix, ECG-Mamba’s AUPRC reached 0.6271, representing a 2.8% improvement.Conclusion: The ECG-Mamba model, based on the SSM, demonstrates potential in detecting cardiac abnormalities from ECG data. Although the model surpasses existing algorithms, it exhibits sensitivity to noise, requiring careful data augmentation. The proposed conservative data augmentation technique addresses this challenge and improves the model’s performance, suggesting a promising direction for future research in ECG analysis using SSMs. The implementation is publicly available at https://huggingface.co/poult/ECGMambaVersionOfJTEHM2020-2021_final.Clinical and Translational Impact Statement: ECG-Mamba enhances heart abnormality detection, enabling early diagnosis and personalised treatment in resource-limited and telemedicine settings. Using real-world data from the PhysioNet/CinC Challenges 2020 and 2021, it accurately models multiple concurrent cardiac conditions, reflecting complex clinical scenarios. Its conservative Non-Uniform-Mix augmentation mitigates noise sensitivity, improving accuracy and reliability for seamless integration into clinical workflows, thus supporting evidence-based practice and addressing healthcare disparities.
期刊介绍:
The IEEE Journal of Translational Engineering in Health and Medicine is an open access product that bridges the engineering and clinical worlds, focusing on detailed descriptions of advanced technical solutions to a clinical need along with clinical results and healthcare relevance. The journal provides a platform for state-of-the-art technology directions in the interdisciplinary field of biomedical engineering, embracing engineering, life sciences and medicine. A unique aspect of the journal is its ability to foster a collaboration between physicians and engineers for presenting broad and compelling real world technological and engineering solutions that can be implemented in the interest of improving quality of patient care and treatment outcomes, thereby reducing costs and improving efficiency. The journal provides an active forum for clinical research and relevant state-of the-art technology for members of all the IEEE societies that have an interest in biomedical engineering as well as reaching out directly to physicians and the medical community through the American Medical Association (AMA) and other clinical societies. The scope of the journal includes, but is not limited, to topics on: Medical devices, healthcare delivery systems, global healthcare initiatives, and ICT based services; Technological relevance to healthcare cost reduction; Technology affecting healthcare management, decision-making, and policy; Advanced technical work that is applied to solving specific clinical needs.