Enhancing daily precipitation reconstruction: An improved version of the reddPrec R package

IF 4.6 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Adrian Huerta , Stefan Brönnimann , Martín de Luis , Santiago Beguería , Roberto Serrano-Notivoli
{"title":"Enhancing daily precipitation reconstruction: An improved version of the reddPrec R package","authors":"Adrian Huerta ,&nbsp;Stefan Brönnimann ,&nbsp;Martín de Luis ,&nbsp;Santiago Beguería ,&nbsp;Roberto Serrano-Notivoli","doi":"10.1016/j.envsoft.2025.106717","DOIUrl":null,"url":null,"abstract":"<div><div>Reconstructing high-quality daily precipitation series is essential for climate studies, hydrological modeling, and environmental applications. This work presents a new version of reddPrec, a versatile and flexible R package designed to reconstruct precipitation datasets through standard quality control, gap-filling, and grid creation procedures. The update introduces greater flexibility in spatial modeling, inclusion of dynamic covariates, and new modules for enhanced quality control and homogenization. Daily precipitation can now be predicted using machine learning approaches within a flexible, user-friendly framework, allowing users to select modeling approaches and customize settings. We demonstrate its capabilities through case studies in Switzerland and Spain, evaluating improvements in reconstruction accuracy, quality control, and homogenization. Enhanced quality control and homogenization procedures were specifically validated to ensure reliable adjustment and consistency of precipitation series. Overall, reddPrec provides a comprehensive and reliable tool for reconstructing precipitation series, supporting the creation of high-quality datasets for climate research and related fields.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"195 ","pages":"Article 106717"},"PeriodicalIF":4.6000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815225004013","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Reconstructing high-quality daily precipitation series is essential for climate studies, hydrological modeling, and environmental applications. This work presents a new version of reddPrec, a versatile and flexible R package designed to reconstruct precipitation datasets through standard quality control, gap-filling, and grid creation procedures. The update introduces greater flexibility in spatial modeling, inclusion of dynamic covariates, and new modules for enhanced quality control and homogenization. Daily precipitation can now be predicted using machine learning approaches within a flexible, user-friendly framework, allowing users to select modeling approaches and customize settings. We demonstrate its capabilities through case studies in Switzerland and Spain, evaluating improvements in reconstruction accuracy, quality control, and homogenization. Enhanced quality control and homogenization procedures were specifically validated to ensure reliable adjustment and consistency of precipitation series. Overall, reddPrec provides a comprehensive and reliable tool for reconstructing precipitation series, supporting the creation of high-quality datasets for climate research and related fields.

Abstract Image

增强日降水重建:redprec R包的改进版本
重建高质量的日降水序列对于气候研究、水文建模和环境应用至关重要。这项工作介绍了一个新版本的reddPrec,这是一个多功能和灵活的R软件包,旨在通过标准的质量控制、空白填充和网格创建程序重建降水数据集。该更新在空间建模中引入了更大的灵活性,包括动态协变量,以及增强质量控制和均质化的新模块。现在,可以在灵活、用户友好的框架内使用机器学习方法预测日降水量,允许用户选择建模方法和自定义设置。我们通过在瑞士和西班牙的案例研究来展示其能力,评估重建精度、质量控制和均质化方面的改进。加强了质量控制和均质程序,以确保可靠的调整和沉淀系列的一致性。总的来说,reddPrec为重建降水序列提供了一个全面、可靠的工具,支持为气候研究和相关领域创建高质量的数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Modelling & Software
Environmental Modelling & Software 工程技术-工程:环境
CiteScore
9.30
自引率
8.20%
发文量
241
审稿时长
60 days
期刊介绍: Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信