Prediction of Half-Value Layer of glass-based materials using machine learning algorithms

IF 2.8 3区 物理与天体物理 Q3 CHEMISTRY, PHYSICAL
D.E. Zenkhri, M.I. Sayyed
{"title":"Prediction of Half-Value Layer of glass-based materials using machine learning algorithms","authors":"D.E. Zenkhri, M.I. Sayyed","doi":"10.1016/j.radphyschem.2025.113373","DOIUrl":null,"url":null,"abstract":"Accurate prediction of the half-value layer (HVL) in radiation shielding materials is essential for optimizing their composition and performance. In this study, we employ four ensemble machine learning models XGBoost, LightGBM, Gradient Boosting Regressor (GBR), and Random Forest to predict HVL based on the chemical composition of glass-based materials. Each model was fine-tuned using Optuna’s Bayesian optimization and evaluated through 5-fold cross-validation and a separate testing phase using metrics including <mml:math altimg=\"si68.svg\" display=\"inline\"><mml:msup><mml:mrow><mml:mi>R</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:math> , RMSE, MAE, and MAPE. All models demonstrated high predictive performance (<mml:math altimg=\"si2.svg\" display=\"inline\"><mml:mrow><mml:msup><mml:mrow><mml:mi>R</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">&gt;</mml:mo><mml:mn>0</mml:mn><mml:mo>.</mml:mo><mml:mn>996</mml:mn></mml:mrow></mml:math>), with the GBR model achieving the best results (<mml:math altimg=\"si3.svg\" display=\"inline\"><mml:mrow><mml:msup><mml:mrow><mml:mi>R</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">=</mml:mo><mml:mn>0</mml:mn><mml:mo>.</mml:mo><mml:mn>999</mml:mn></mml:mrow></mml:math>, <mml:math altimg=\"si4.svg\" display=\"inline\"><mml:mrow><mml:mi>R</mml:mi><mml:mi>M</mml:mi><mml:mi>S</mml:mi><mml:mi>E</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">=</mml:mo><mml:mn>0</mml:mn><mml:mo>.</mml:mo><mml:mn>0772</mml:mn></mml:mrow></mml:math>, <mml:math altimg=\"si5.svg\" display=\"inline\"><mml:mrow><mml:mi>M</mml:mi><mml:mi>A</mml:mi><mml:mi>P</mml:mi><mml:mi>E</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">=</mml:mo><mml:mn>0</mml:mn><mml:mo>.</mml:mo><mml:mn>09</mml:mn><mml:mtext>%</mml:mtext></mml:mrow></mml:math>). XGBoost also performed competitively, offering a balance between accuracy and computational efficiency. These results highlight the potential of gradient boosting approaches to speed up the design and study of radiation shielding materials and show how effective they are at identifying intricate nonlinear correlations within material databases.","PeriodicalId":20861,"journal":{"name":"Radiation Physics and Chemistry","volume":"19 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation Physics and Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.radphyschem.2025.113373","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate prediction of the half-value layer (HVL) in radiation shielding materials is essential for optimizing their composition and performance. In this study, we employ four ensemble machine learning models XGBoost, LightGBM, Gradient Boosting Regressor (GBR), and Random Forest to predict HVL based on the chemical composition of glass-based materials. Each model was fine-tuned using Optuna’s Bayesian optimization and evaluated through 5-fold cross-validation and a separate testing phase using metrics including R2 , RMSE, MAE, and MAPE. All models demonstrated high predictive performance (R2>0.996), with the GBR model achieving the best results (R2=0.999, RMSE=0.0772, MAPE=0.09%). XGBoost also performed competitively, offering a balance between accuracy and computational efficiency. These results highlight the potential of gradient boosting approaches to speed up the design and study of radiation shielding materials and show how effective they are at identifying intricate nonlinear correlations within material databases.
利用机器学习算法预测玻璃基材料的半值层
辐射屏蔽材料中半值层(HVL)的准确预测对于优化材料的组成和性能至关重要。在这项研究中,我们采用了四种集成机器学习模型XGBoost、LightGBM、Gradient Boosting Regressor (GBR)和Random Forest来预测基于玻璃基材料化学成分的HVL。每个模型都使用Optuna的贝叶斯优化进行微调,并通过5倍交叉验证和使用R2、RMSE、MAE和MAPE等指标的单独测试阶段进行评估。所有模型均具有较高的预测性能(R2>0.996),其中GBR模型的预测效果最好(R2=0.999, RMSE=0.0772, MAPE=0.09%)。XGBoost的表现也很有竞争力,在精度和计算效率之间提供了平衡。这些结果突出了梯度增强方法在加速辐射屏蔽材料的设计和研究方面的潜力,并显示了它们在识别材料数据库中复杂的非线性相关性方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Radiation Physics and Chemistry
Radiation Physics and Chemistry 化学-核科学技术
CiteScore
5.60
自引率
17.20%
发文量
574
审稿时长
12 weeks
期刊介绍: Radiation Physics and Chemistry is a multidisciplinary journal that provides a medium for publication of substantial and original papers, reviews, and short communications which focus on research and developments involving ionizing radiation in radiation physics, radiation chemistry and radiation processing. The journal aims to publish papers with significance to an international audience, containing substantial novelty and scientific impact. The Editors reserve the rights to reject, with or without external review, papers that do not meet these criteria. This could include papers that are very similar to previous publications, only with changed target substrates, employed materials, analyzed sites and experimental methods, report results without presenting new insights and/or hypothesis testing, or do not focus on the radiation effects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信