Single InAs Nanowire Hypersonic Acoustic Nanoresonator.

IF 4.6 2区 化学 Q2 CHEMISTRY, PHYSICAL
Alessia Colosimo,Marco Gandolfi,Noëlle Lascoux,Aurélien Crut,Fabien Vialla,Valeria Demontis,Valentina Zannier,Lucia Sorba,Fabio Beltram,Francesco Rossella,Natalia Del Fatti,Paolo Maioli,Francesco Banfi
{"title":"Single InAs Nanowire Hypersonic Acoustic Nanoresonator.","authors":"Alessia Colosimo,Marco Gandolfi,Noëlle Lascoux,Aurélien Crut,Fabien Vialla,Valeria Demontis,Valentina Zannier,Lucia Sorba,Fabio Beltram,Francesco Rossella,Natalia Del Fatti,Paolo Maioli,Francesco Banfi","doi":"10.1021/acs.jpclett.5c02806","DOIUrl":null,"url":null,"abstract":"We report acoustic oscillations in suspended single InAs nanowire resonators at hypersonic frequencies, measured via all-optical time-resolved microscopy. Two distinct oscillations, attributed to the fundamental longitudinal extensional and radial breathing modes, are observed with frequencies reaching tens of GHz. The measured frequencies are in good agreement with finite element method simulations, validating the stiffness matrix for wurtzite InAs nanowires proposed in a recent work. This achievement is crucial for device development, enabling accurate nanoresonator modeling. The acoustic time attenuation rate and the reciprocal quality factor of the radial breathing mode are found to scale linearly with the fraction of nanowire length in contact with the substrate, indicating that extrinsic acoustic damping is the dominant attenuation mechanism in our experiments. This finding indicates that optimizing the clamping design should be more effective in further enhancing the quality factor of the nanoresonator than improving the crystal quality of the InAs nanowire. These results pave the way for the development of high-performance hypersonic semiconductor nanoresonators and optomechanical nanotransducers.","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"16 1","pages":"11158-11166"},"PeriodicalIF":4.6000,"publicationDate":"2025-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.5c02806","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We report acoustic oscillations in suspended single InAs nanowire resonators at hypersonic frequencies, measured via all-optical time-resolved microscopy. Two distinct oscillations, attributed to the fundamental longitudinal extensional and radial breathing modes, are observed with frequencies reaching tens of GHz. The measured frequencies are in good agreement with finite element method simulations, validating the stiffness matrix for wurtzite InAs nanowires proposed in a recent work. This achievement is crucial for device development, enabling accurate nanoresonator modeling. The acoustic time attenuation rate and the reciprocal quality factor of the radial breathing mode are found to scale linearly with the fraction of nanowire length in contact with the substrate, indicating that extrinsic acoustic damping is the dominant attenuation mechanism in our experiments. This finding indicates that optimizing the clamping design should be more effective in further enhancing the quality factor of the nanoresonator than improving the crystal quality of the InAs nanowire. These results pave the way for the development of high-performance hypersonic semiconductor nanoresonators and optomechanical nanotransducers.
单InAs纳米线高超声速声学纳米谐振器。
我们报告了悬浮单InAs纳米线谐振器在高超声速频率下的声学振荡,通过全光学时间分辨显微镜测量。两个不同的振荡,归因于基本的纵向伸展和径向呼吸模式,被观察到的频率达到几十千兆赫。测量频率与有限元模拟结果吻合较好,验证了近期研究中提出的纤锌矿InAs纳米线刚度矩阵。这一成就对于器件开发至关重要,可以实现精确的纳米谐振器建模。研究发现,径向呼吸模式的声时间衰减率和倒数质量因子与纳米线长度与衬底接触的比例成线性关系,表明在我们的实验中,外部声阻尼是主要的衰减机制。这一发现表明,优化箝位设计在进一步提高纳米谐振器的质量因子方面应该比改善InAs纳米线的晶体质量更有效。这些结果为高性能高超声速半导体纳米谐振器和光机械纳米换能器的发展铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信