Hangjie Ying, Yamei Chen, Wei Lin, Yun Fan, Ming Chen, Ying Jin
{"title":"TET2 repression contributes to EGFR TKI resistance in EGFR-mutant non-small cell lung cancer through regulating AXIN2 methylation.","authors":"Hangjie Ying, Yamei Chen, Wei Lin, Yun Fan, Ming Chen, Ying Jin","doi":"10.1038/s41598-025-20263-8","DOIUrl":null,"url":null,"abstract":"<p><p>Through targeted next-generation sequencing of 83 non-small cell lung cancer (NSCLC) patients with first-generation epidermal growth factor receptor tyrosine kinase inhibitor (EGFR TKI) resistance, we detected 11% TET2 mutations in the T790M-negative subgroup. To explore the molecular mechanism of TET2 in EGFR TKI resistance, reduced representation bisulfite sequencing (RRBS) was adopted to analyze the global genomic methylation profiles and detect the differentially methylated genes in the TET2-knockdown (KD) PC9 and control PC9 cell lines, following bioinformatics analysis of gene ontology (GO) functions and kyoto encyclopedia of genes and genomes (KEGG) signaling to screen for genes associated with drug resistance. TET2 KD attenuated gefitinib-induced apoptosis and decreased the sensitivity of EGFR-mutant lung cancer cells to gefitinib. Forty-three drug resistance genes with hypermethylated promoter regions were identified via RRBS and bioinformatic analysis in PC9<sup>TET2 KD</sup> cells. Then, 10 candidate genes were screened for further validation. RT‒PCR demonstrated that the expression of AXIN2 and CSK was significantly lower in PC9<sup>TET2 KD</sup> cells than in control cells. Furthermore, AXIN2 KD attenuated gefitinib-induced apoptosis and decreased the sensitivity of PC9 cells to gefitinib. Importantly, we found that the demethylation drug decitabine (DCA) could reverse gefitinib resistance in PC9<sup>TET2 KD</sup> cells and mouse models. These results indicate that the methylation of AXIN2 induced by TET2 repression is a novel resistance mechanism of EGFR TKIs in EGFR-mutant NSCLC. Demethylation drugs have the potential to overcome EGFR TKI resistance induced by loss-of-function TET2 mutations.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"36324"},"PeriodicalIF":3.9000,"publicationDate":"2025-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-20263-8","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Through targeted next-generation sequencing of 83 non-small cell lung cancer (NSCLC) patients with first-generation epidermal growth factor receptor tyrosine kinase inhibitor (EGFR TKI) resistance, we detected 11% TET2 mutations in the T790M-negative subgroup. To explore the molecular mechanism of TET2 in EGFR TKI resistance, reduced representation bisulfite sequencing (RRBS) was adopted to analyze the global genomic methylation profiles and detect the differentially methylated genes in the TET2-knockdown (KD) PC9 and control PC9 cell lines, following bioinformatics analysis of gene ontology (GO) functions and kyoto encyclopedia of genes and genomes (KEGG) signaling to screen for genes associated with drug resistance. TET2 KD attenuated gefitinib-induced apoptosis and decreased the sensitivity of EGFR-mutant lung cancer cells to gefitinib. Forty-three drug resistance genes with hypermethylated promoter regions were identified via RRBS and bioinformatic analysis in PC9TET2 KD cells. Then, 10 candidate genes were screened for further validation. RT‒PCR demonstrated that the expression of AXIN2 and CSK was significantly lower in PC9TET2 KD cells than in control cells. Furthermore, AXIN2 KD attenuated gefitinib-induced apoptosis and decreased the sensitivity of PC9 cells to gefitinib. Importantly, we found that the demethylation drug decitabine (DCA) could reverse gefitinib resistance in PC9TET2 KD cells and mouse models. These results indicate that the methylation of AXIN2 induced by TET2 repression is a novel resistance mechanism of EGFR TKIs in EGFR-mutant NSCLC. Demethylation drugs have the potential to overcome EGFR TKI resistance induced by loss-of-function TET2 mutations.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.