AQuaRef: machine learning accelerated quantum refinement of protein structures.

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Roman Zubatyuk, Malgorzata Biczysko, Kavindri Ranasinghe, Nigel W Moriarty, Hatice Gokcan, Holger Kruse, Billy K Poon, Paul D Adams, Mark P Waller, Adrian E Roitberg, Olexandr Isayev, Pavel V Afonine
{"title":"AQuaRef: machine learning accelerated quantum refinement of protein structures.","authors":"Roman Zubatyuk, Malgorzata Biczysko, Kavindri Ranasinghe, Nigel W Moriarty, Hatice Gokcan, Holger Kruse, Billy K Poon, Paul D Adams, Mark P Waller, Adrian E Roitberg, Olexandr Isayev, Pavel V Afonine","doi":"10.1038/s41467-025-64313-1","DOIUrl":null,"url":null,"abstract":"<p><p>Cryo-EM and X-ray crystallography provide crucial experimental data for obtaining atomic-detail models of biomacromolecules. Refining these models relies on library-based stereochemical data, which, in addition to being limited to known chemical entities, do not include meaningful noncovalent interactions. Quantum mechanical (QM) calculations could alleviate these issues but are too expensive for large molecules. Here we present a novel AI-enabled Quantum Refinement (AQuaRef) based on AIMNet2 machine learned interatomic potential (MLIP) mimicking QM at substantially lower computational costs. By refining 41 cryo-EM and 30 X-ray structures, we show that this approach yields atomic models with superior geometric quality compared to standard techniques, while maintaining an equal or better fit to experimental data. Notably, AQuaRef aids in determining proton positions, as illustrated in the challenging case of short hydrogen bonds in the parkinsonism-associated human protein DJ-1 and its bacterial homolog YajL.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"16 1","pages":"9224"},"PeriodicalIF":15.7000,"publicationDate":"2025-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-64313-1","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Cryo-EM and X-ray crystallography provide crucial experimental data for obtaining atomic-detail models of biomacromolecules. Refining these models relies on library-based stereochemical data, which, in addition to being limited to known chemical entities, do not include meaningful noncovalent interactions. Quantum mechanical (QM) calculations could alleviate these issues but are too expensive for large molecules. Here we present a novel AI-enabled Quantum Refinement (AQuaRef) based on AIMNet2 machine learned interatomic potential (MLIP) mimicking QM at substantially lower computational costs. By refining 41 cryo-EM and 30 X-ray structures, we show that this approach yields atomic models with superior geometric quality compared to standard techniques, while maintaining an equal or better fit to experimental data. Notably, AQuaRef aids in determining proton positions, as illustrated in the challenging case of short hydrogen bonds in the parkinsonism-associated human protein DJ-1 and its bacterial homolog YajL.

AQuaRef:机器学习加速了蛋白质结构的量子细化。
低温电镜和x射线晶体学为获得生物大分子的原子细节模型提供了重要的实验数据。完善这些模型依赖于基于库的立体化学数据,这些数据除了仅限于已知的化学实体外,还不包括有意义的非共价相互作用。量子力学(QM)计算可以缓解这些问题,但对于大分子来说太昂贵了。在这里,我们提出了一种基于AIMNet2机器学习原子间势(MLIP)的新型ai支持量子细化(AQuaRef),以大幅降低的计算成本模拟QM。通过改进41个低温电镜和30个x射线结构,我们表明,与标准技术相比,这种方法产生的原子模型具有优越的几何质量,同时保持相同或更好地适合实验数据。值得注意的是,AQuaRef有助于确定质子位置,正如帕金森病相关的人蛋白DJ-1及其细菌同源物YajL的短氢键具有挑战性的情况所示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信