Elisavet Tatsi, Gaia Roberta Ragno, Andrea Nitti, Chiara Botta, Stefano Turri, Dario Pasini, Gianmarco Griffini
{"title":"Tailoring aggregation-induced emission in luminescent solar concentrators through controlled polymerization.","authors":"Elisavet Tatsi, Gaia Roberta Ragno, Andrea Nitti, Chiara Botta, Stefano Turri, Dario Pasini, Gianmarco Griffini","doi":"10.1038/s42004-025-01700-1","DOIUrl":null,"url":null,"abstract":"<p><p>Luminescent solar concentrators (LSCs) hold great potential as versatile energy conversion systems for diverse applications. Here, we explore the covalent incorporation of aggregation-induced emission (AIE) luminogens into polymeric backbones for LSCs. Copolymers based on methyl-methacrylate and an AIE-active monomer (tetraphenyl ethylene methacrylate - TPEMA) are synthesized using free radical (FR) and reversible addition-fragmentation chain transfer (RAFT) polymerizations. By integrating TPEMA into the polymer structure, we exploit its unique emission properties when the AIEgens are in close proximity. RAFT polymerization affords copolymers with narrower molecular weight distribution, improved thermal stability, higher glass transition temperature, and optical properties that scale positively with TPEMA content, outperforming FR analogues. RAFT-based LSC devices exhibit more consistent performance, underscoring the importance of controlled polymerization on AIEgen response and device behavior. This study demonstrates an effective strategy to enhance LSC response through synthetic control of the macromolecular network and strategic incorporation of AIEgens into luminescent polymer matrices.</p>","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":"8 1","pages":"312"},"PeriodicalIF":6.2000,"publicationDate":"2025-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s42004-025-01700-1","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Luminescent solar concentrators (LSCs) hold great potential as versatile energy conversion systems for diverse applications. Here, we explore the covalent incorporation of aggregation-induced emission (AIE) luminogens into polymeric backbones for LSCs. Copolymers based on methyl-methacrylate and an AIE-active monomer (tetraphenyl ethylene methacrylate - TPEMA) are synthesized using free radical (FR) and reversible addition-fragmentation chain transfer (RAFT) polymerizations. By integrating TPEMA into the polymer structure, we exploit its unique emission properties when the AIEgens are in close proximity. RAFT polymerization affords copolymers with narrower molecular weight distribution, improved thermal stability, higher glass transition temperature, and optical properties that scale positively with TPEMA content, outperforming FR analogues. RAFT-based LSC devices exhibit more consistent performance, underscoring the importance of controlled polymerization on AIEgen response and device behavior. This study demonstrates an effective strategy to enhance LSC response through synthetic control of the macromolecular network and strategic incorporation of AIEgens into luminescent polymer matrices.
期刊介绍:
Communications Chemistry is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the chemical sciences. Research papers published by the journal represent significant advances bringing new chemical insight to a specialized area of research. We also aim to provide a community forum for issues of importance to all chemists, regardless of sub-discipline.