Strain-Modulated Conductivity and Work Function on Thin Crystals of Mo2C

IF 5.5 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Gokay Adabasi, , , Sourabh Kumar, , , Elif Okay, , , Joshua R. Evans, , , Eren Atli, , , Joshua Ancheta, , , Goknur Cambaz Buke*, , , Ashlie Martini*, , and , Mehmet Z. Baykara*, 
{"title":"Strain-Modulated Conductivity and Work Function on Thin Crystals of Mo2C","authors":"Gokay Adabasi,&nbsp;, ,&nbsp;Sourabh Kumar,&nbsp;, ,&nbsp;Elif Okay,&nbsp;, ,&nbsp;Joshua R. Evans,&nbsp;, ,&nbsp;Eren Atli,&nbsp;, ,&nbsp;Joshua Ancheta,&nbsp;, ,&nbsp;Goknur Cambaz Buke*,&nbsp;, ,&nbsp;Ashlie Martini*,&nbsp;, and ,&nbsp;Mehmet Z. Baykara*,&nbsp;","doi":"10.1021/acsanm.5c03237","DOIUrl":null,"url":null,"abstract":"<p >Thin transition metal carbides (TMCs) exhibit a favorable combination of electronic and mechanical properties that makes them attractive for applications ranging from flexible energy storage to electromagnetic shielding. However, the influence of strain on key electronic characteristics such as conductivity and work function has not yet been elucidated. Here, we present a combined experimental and computational study of surface electronics on thin crystals of molybdenum carbide (Mo<sub>2</sub>C). Conductive atomic force microscopy (C-AFM) and Kelvin probe force microscopy (KPFM) performed on rippled regions of crystal surfaces reveal a significant increase in electrical conductivity and a notable reduction in work function under tensile strains of 1% and below. <i>Ab initio</i> calculations confirm the trends observed in the experiments, pointing toward increased density of states (DOS), enhanced mobility, and reduced work function under tensile strain. Our work highlights the potential of strain engineering for tuning the electronic characteristics of thin TMCs.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"8 41","pages":"19810–19817"},"PeriodicalIF":5.5000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.5c03237","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Thin transition metal carbides (TMCs) exhibit a favorable combination of electronic and mechanical properties that makes them attractive for applications ranging from flexible energy storage to electromagnetic shielding. However, the influence of strain on key electronic characteristics such as conductivity and work function has not yet been elucidated. Here, we present a combined experimental and computational study of surface electronics on thin crystals of molybdenum carbide (Mo2C). Conductive atomic force microscopy (C-AFM) and Kelvin probe force microscopy (KPFM) performed on rippled regions of crystal surfaces reveal a significant increase in electrical conductivity and a notable reduction in work function under tensile strains of 1% and below. Ab initio calculations confirm the trends observed in the experiments, pointing toward increased density of states (DOS), enhanced mobility, and reduced work function under tensile strain. Our work highlights the potential of strain engineering for tuning the electronic characteristics of thin TMCs.

Abstract Image

Mo2C薄晶的应变调制电导率和功函数
薄过渡金属碳化物(tmc)表现出良好的电子和机械性能组合,使其在从柔性储能到电磁屏蔽的应用中具有吸引力。然而,应变对电导率和功函数等关键电子特性的影响尚未得到阐明。在这里,我们提出了一个结合实验和计算研究表面电子的碳化钼(Mo2C)薄晶体。导电原子力显微镜(C-AFM)和开尔文探针力显微镜(KPFM)对晶体表面波纹区域进行了观察,发现在1%及以下的拉伸应变下,电导率显著增加,功函数显著降低。从头计算证实了实验中观察到的趋势,指出在拉伸应变下态密度(DOS)增加,迁移率增强,功函数减小。我们的工作突出了应变工程在调整薄tmc电子特性方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信