Strategic Design of a Single-Source Precursor for in Situ Generation and Integration of Adherent Species on Ni3S4 Entangled-Nanosheets for Energy Storage Applications
IF 5.5 2区 材料科学Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
{"title":"Strategic Design of a Single-Source Precursor for in Situ Generation and Integration of Adherent Species on Ni3S4 Entangled-Nanosheets for Energy Storage Applications","authors":"Rahul Singh, , , Rohit Thakur, , , Umasharan Sahu, , , Ramesh Chandra Sahoo, , , Bhagavatula L.V. Prasad*, , and , H.S.S. Ramakrishna Matte*, ","doi":"10.1021/acsanm.5c03542","DOIUrl":null,"url":null,"abstract":"<p >Synthesizing transition-metal chalcogenides (TMC) via a single-source precursor (SSP) route has shown great potential due to better reproducibility and control over stoichiometry, phase, and morphology. While the SSP converts into TMC, surfactants or coordinating species are essential to ensure dispersibility for further solution-based processing protocols. These additional species are typically highly toxic, difficult to remove, and adversely affect device performance. Here, as a proof of concept, design-induced <i>in situ</i> stabilized Ni<sub>3</sub>S<sub>4</sub> (D<i>i</i>SNi) protocol demonstrates that strategic SSP design and optimized reaction conditions can facilitate directed chemical reactivity, gradually generating adhering species, which seamlessly integrate onto the metal chalcogenides, aiding the formation of stable dispersions without utilizing additional stabilizers. The proposed mechanism is validated by detailed strategic experiments and analysis, like X-ray photoelectron spectroscopy (XPS), accelerated dispersion stability measurements, and postsynthesis base treatment, which confirm the presence of <i>in situ</i> generated diethylammonium ion (DEA<sup>+</sup>) as the adherent and corroborate its role in dispersibility. The obtained Ni<sub>3</sub>S<sub>4</sub> entangled-nanosheets are utilized to fabricate additive-free symmetric supercapacitors with organic electrolyte for charge storage over an extended potential window of 2.8 V and an energy density of 12.44 μW h cm<sup>–2</sup> at a power density of 0.42 mW cm<sup>–2</sup>. The devised D<i>i</i>SNi protocol showcases the importance of the SSP design for achieving multifunctionality. It is anticipated to have a broader impact on the role of careful design of SSP, making it an ideal contender for synthesizing transition-metal chalcogenides.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"8 41","pages":"19943–19951"},"PeriodicalIF":5.5000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.5c03542","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Synthesizing transition-metal chalcogenides (TMC) via a single-source precursor (SSP) route has shown great potential due to better reproducibility and control over stoichiometry, phase, and morphology. While the SSP converts into TMC, surfactants or coordinating species are essential to ensure dispersibility for further solution-based processing protocols. These additional species are typically highly toxic, difficult to remove, and adversely affect device performance. Here, as a proof of concept, design-induced in situ stabilized Ni3S4 (DiSNi) protocol demonstrates that strategic SSP design and optimized reaction conditions can facilitate directed chemical reactivity, gradually generating adhering species, which seamlessly integrate onto the metal chalcogenides, aiding the formation of stable dispersions without utilizing additional stabilizers. The proposed mechanism is validated by detailed strategic experiments and analysis, like X-ray photoelectron spectroscopy (XPS), accelerated dispersion stability measurements, and postsynthesis base treatment, which confirm the presence of in situ generated diethylammonium ion (DEA+) as the adherent and corroborate its role in dispersibility. The obtained Ni3S4 entangled-nanosheets are utilized to fabricate additive-free symmetric supercapacitors with organic electrolyte for charge storage over an extended potential window of 2.8 V and an energy density of 12.44 μW h cm–2 at a power density of 0.42 mW cm–2. The devised DiSNi protocol showcases the importance of the SSP design for achieving multifunctionality. It is anticipated to have a broader impact on the role of careful design of SSP, making it an ideal contender for synthesizing transition-metal chalcogenides.
期刊介绍:
ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.