Controllable Hydrothermal Synthesis of Core–Shell-Type BaFe12O19@Fe3O4/MWCNT Layered Composites with Enhanced Polarization Interfaces for Electromagnetic Energy Conversion

IF 5.5 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zhuolun Li, , , Haozhe Qi, , , Xiaoxia Tian*, , , Jiafu Wang, , , Yuchuan Ma, , , Jincai Wang, , , Guodong Han, , and , Shaobo Qu, 
{"title":"Controllable Hydrothermal Synthesis of Core–Shell-Type BaFe12O19@Fe3O4/MWCNT Layered Composites with Enhanced Polarization Interfaces for Electromagnetic Energy Conversion","authors":"Zhuolun Li,&nbsp;, ,&nbsp;Haozhe Qi,&nbsp;, ,&nbsp;Xiaoxia Tian*,&nbsp;, ,&nbsp;Jiafu Wang,&nbsp;, ,&nbsp;Yuchuan Ma,&nbsp;, ,&nbsp;Jincai Wang,&nbsp;, ,&nbsp;Guodong Han,&nbsp;, and ,&nbsp;Shaobo Qu,&nbsp;","doi":"10.1021/acsanm.5c03727","DOIUrl":null,"url":null,"abstract":"<p >A ternary BaFe<sub>12</sub>O<sub>19</sub>/MWCNT/Fe<sub>3</sub>O<sub>4</sub> composite was synthesized through sequential hydrothermal processing. This architecture leverages dimensional complementarity: interfacial polarization intensifies via synergistic contact between two-dimensional hexaferrite platelets and one-dimensional conductive carbon networks. Simultaneously, magnetic coupling is enhanced through Fe<sub>3</sub>O<sub>4</sub> nanoclusters anchored onto ferrite surfaces, establishing exchange-biased magnetization dynamics. Comprehensive electromagnetic characterization revealed exceptional absorption performance, achieving −55.67 dB reflection loss at 15.62 GHz with a 4.03 GHz effective bandwidth (13.92–17.95 GHz) at 1.29 mm thickness. Performance enhancement stems from synergistic dielectric–magnetic interactions, including heterojunction polarization, exchange-coupled resonance, and multicomponent-enabled impedance matching. This structurally optimized system demonstrates substantial application potential for advanced broadband electromagnetic wave attenuation solutions.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"8 41","pages":"20042–20053"},"PeriodicalIF":5.5000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.5c03727","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A ternary BaFe12O19/MWCNT/Fe3O4 composite was synthesized through sequential hydrothermal processing. This architecture leverages dimensional complementarity: interfacial polarization intensifies via synergistic contact between two-dimensional hexaferrite platelets and one-dimensional conductive carbon networks. Simultaneously, magnetic coupling is enhanced through Fe3O4 nanoclusters anchored onto ferrite surfaces, establishing exchange-biased magnetization dynamics. Comprehensive electromagnetic characterization revealed exceptional absorption performance, achieving −55.67 dB reflection loss at 15.62 GHz with a 4.03 GHz effective bandwidth (13.92–17.95 GHz) at 1.29 mm thickness. Performance enhancement stems from synergistic dielectric–magnetic interactions, including heterojunction polarization, exchange-coupled resonance, and multicomponent-enabled impedance matching. This structurally optimized system demonstrates substantial application potential for advanced broadband electromagnetic wave attenuation solutions.

Abstract Image

具有增强极化界面的核-壳型BaFe12O19@Fe3O4/MWCNT层状复合材料的可控水热合成
采用顺序水热法合成了BaFe12O19/MWCNT/Fe3O4三元复合材料。这种结构利用了维度上的互补性:界面极化通过二维六铁氧体血小板和一维导电碳网络之间的协同接触而增强。同时,通过固定在铁氧体表面的Fe3O4纳米团簇增强了磁耦合,建立了交换偏置磁化动力学。综合电磁特性显示了优异的吸收性能,在1.29 mm厚度下,在15.62 GHz处的反射损耗为−55.67 dB,有效带宽为4.03 GHz (13.92-17.95 GHz)。性能增强源于协同的介电-磁相互作用,包括异质结极化、交换耦合共振和多元件支持的阻抗匹配。这种结构优化的系统显示了先进宽带电磁波衰减解决方案的巨大应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信