{"title":"Intrinsically Disordered Protein-Inspired Nanovector-Based Coacervates for the Direct Cytosolic Transport of Biomacromolecules.","authors":"Soyeong Jin,Hyemin Park,Seuk-Min Ryu,Dagyeong Guk,Jaeeun Lee,Seongeon Jin,Changjoon Keum,Jinyoung Park,Myoung-Hwan Park,Chaekyu Kim,Hojun Kim,Jaegeun Noh,Kwan Hyi Lee,Ja-Hyoung Ryu,Youngdo Jeong","doi":"10.1002/adma.202507877","DOIUrl":null,"url":null,"abstract":"In eukaryotic cells, membraneless organelles (MLOs) are formed via liquid‒liquid phase separation (LLPS) involving intrinsically disordered proteins (IDPs) and biomacromolecules, enabling biomacromolecule transport without vesicles, transporters, or channels. Although MLO-mimetic coacervates generated from synthetic biomaterials can deliver biomacromolecules into cells, they lack the conformational adaptability of IDPs and a defined internalization mechanism, limiting their stability under physiological conditions and hindering biomedical translation. Here, IDP-inspired nanovectors (IDP-NVs) are developed with conformational adaptability capable of forming nanocoacervates (NCs) with biomacromolecules for cytosolic delivery. Mixing with IDP-NVs and cargos results in stable NCs under physiological conditions, and the NCs can directly penetrate cellular membranes through the molecular motion of IDP-NVs. After the internalization, cytoplasmic glutathione triggers NC disassembly, releasing biomacromolecules in the cytosol. The NCs effectively deliver biomacromolecules of diverse sizes, charges, shapes (globular proteins and antibodies), and functions (mRNAs and CRISPR units), demonstrating their versatility and potential for biomedical applications.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"16 1","pages":"e07877"},"PeriodicalIF":26.8000,"publicationDate":"2025-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202507877","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In eukaryotic cells, membraneless organelles (MLOs) are formed via liquid‒liquid phase separation (LLPS) involving intrinsically disordered proteins (IDPs) and biomacromolecules, enabling biomacromolecule transport without vesicles, transporters, or channels. Although MLO-mimetic coacervates generated from synthetic biomaterials can deliver biomacromolecules into cells, they lack the conformational adaptability of IDPs and a defined internalization mechanism, limiting their stability under physiological conditions and hindering biomedical translation. Here, IDP-inspired nanovectors (IDP-NVs) are developed with conformational adaptability capable of forming nanocoacervates (NCs) with biomacromolecules for cytosolic delivery. Mixing with IDP-NVs and cargos results in stable NCs under physiological conditions, and the NCs can directly penetrate cellular membranes through the molecular motion of IDP-NVs. After the internalization, cytoplasmic glutathione triggers NC disassembly, releasing biomacromolecules in the cytosol. The NCs effectively deliver biomacromolecules of diverse sizes, charges, shapes (globular proteins and antibodies), and functions (mRNAs and CRISPR units), demonstrating their versatility and potential for biomedical applications.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.