{"title":"Metallosalphen-Covalent Organic Framework-Based Semiconducting Artificial Enzymes with Radio-Activable Antitumor Immunity for Suppressing Tumor Metastasis and Recurrence","authors":"Yu Min, Qian Li, Zhenyang Zhao, Qinlong Wen, Wenjie Xu, Mohsen Adeli, Zhigong Wei, Xiaolin Wang, Xianglin Luo, Xingchen Peng, Chong Cheng","doi":"10.1021/acsnano.5c13672","DOIUrl":null,"url":null,"abstract":"Reactive oxygen species (ROS)-catalytic therapies have gained increasing popularity in preventing tumor metastasis and recurrence, yet their efficiency is often compromised by limited systemic immune activation. Herein, we report the <i>de novo</i> design of Ru-coordinated bis-Schiff base salphen-covalent organic frameworks (SCOF-Ru) to serve as semiconducting artificial enzymes with radio-activable ROS-catalytic efficiency and antitumor immunity for suppressing tumor metastasis and recurrence. Experimental and theoretical results demonstrate that the semiconducting SCOF-Ru displays large π-conjugation, efficient electron transfer, strong electron–hole separation, and unique Ru<sub>2</sub>–N<sub>4</sub>O<sub>2</sub> catalytic centers, enabling the most superior ROS production capability under low-dose X-ray irradiation. Rather than relying on high-Z elements, semiconducting SCOF-Ru with optimized band structures endows Ru sites with high radiosensitization effects. Our findings have disclosed that the SCOF-Ru can not only effectively inhibit DNA repair but also trigger robust apoptosis through the downregulation of calcium signaling pathways. Correspondingly, the therapeutic superiority and recurrence inhibition efficacies of SCOF-Ru have been validated in different tumor models, especially radiotherapy-resistant patient-derived xenograft models. Combined with immune checkpoint blockade, radio-activable SCOF-Ru shows great potential to robustly inhibit the growth of distant tumors. We believe the innovative design of ROS-catalytic and radio-activable artificial enzymes will enable a promising avenue for treating malignant tumors.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"20 1","pages":""},"PeriodicalIF":16.0000,"publicationDate":"2025-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c13672","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Reactive oxygen species (ROS)-catalytic therapies have gained increasing popularity in preventing tumor metastasis and recurrence, yet their efficiency is often compromised by limited systemic immune activation. Herein, we report the de novo design of Ru-coordinated bis-Schiff base salphen-covalent organic frameworks (SCOF-Ru) to serve as semiconducting artificial enzymes with radio-activable ROS-catalytic efficiency and antitumor immunity for suppressing tumor metastasis and recurrence. Experimental and theoretical results demonstrate that the semiconducting SCOF-Ru displays large π-conjugation, efficient electron transfer, strong electron–hole separation, and unique Ru2–N4O2 catalytic centers, enabling the most superior ROS production capability under low-dose X-ray irradiation. Rather than relying on high-Z elements, semiconducting SCOF-Ru with optimized band structures endows Ru sites with high radiosensitization effects. Our findings have disclosed that the SCOF-Ru can not only effectively inhibit DNA repair but also trigger robust apoptosis through the downregulation of calcium signaling pathways. Correspondingly, the therapeutic superiority and recurrence inhibition efficacies of SCOF-Ru have been validated in different tumor models, especially radiotherapy-resistant patient-derived xenograft models. Combined with immune checkpoint blockade, radio-activable SCOF-Ru shows great potential to robustly inhibit the growth of distant tumors. We believe the innovative design of ROS-catalytic and radio-activable artificial enzymes will enable a promising avenue for treating malignant tumors.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.