Mina Barzegaramiriolya, Erin S. Grant, Trent Ralph, Yang Li, Giannis Thalassinos, Anton Tadich, Lars Thomsen, Takeshi Ohshima, Hiroshi Abe, Nikolai Dontschuk, Alastair Stacey, Paul Mulvaney, Liam. T. Hall, Philipp Reineck, David A. Simpson
{"title":"Functionalized Fluorescent Nanodiamonds with Millisecond Spin Relaxation Times","authors":"Mina Barzegaramiriolya, Erin S. Grant, Trent Ralph, Yang Li, Giannis Thalassinos, Anton Tadich, Lars Thomsen, Takeshi Ohshima, Hiroshi Abe, Nikolai Dontschuk, Alastair Stacey, Paul Mulvaney, Liam. T. Hall, Philipp Reineck, David A. Simpson","doi":"10.1021/acsnano.5c02407","DOIUrl":null,"url":null,"abstract":"Fluorescent nanodiamonds (FNDs) containing nitrogen-vacancy (NV) defects are useful probes for biological imaging and nanoscale sensing applications. Here, we explore the effect of chemical surface modifications and core–shell structures on the <i>T</i><sub>1</sub> relaxation times of 100 nm FNDs hosting nitrogen-vacancy ensembles. The results show that surface oxidation and silica coating of FNDs using the Stöber method can dramatically increase the spin relaxation time from <i>T</i><sub><i>1</i></sub> = <i>320</i> ± 9 μs to <i>T</i><sub><i>1</i></sub> = 1.00 ± 0.06 ms. Using FT-IR and NEXAFS measurements conducted on air oxidized particles, we find that changes to surface functional groups and sp<sup>2</sup> carbon density may be responsible for the observed enhancements to the spin relaxation rate. Finally, we use a Monte Carlo model to numerically investigate the relationship between chemical sensitivity and shell thickness and find that a shell thickness on the order of 1 nm should provide the highest sensitivity. Our findings demonstrate that the surface of FNDs can be engineered to exhibit bulk-like <i>T</i><sub>1</sub> relaxation times, in the absence of complex quantum control sequences, which is crucial to advancing biosensing and imaging applications where surface spin noise currently limits measurement precision.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"28 1","pages":""},"PeriodicalIF":16.0000,"publicationDate":"2025-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c02407","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Fluorescent nanodiamonds (FNDs) containing nitrogen-vacancy (NV) defects are useful probes for biological imaging and nanoscale sensing applications. Here, we explore the effect of chemical surface modifications and core–shell structures on the T1 relaxation times of 100 nm FNDs hosting nitrogen-vacancy ensembles. The results show that surface oxidation and silica coating of FNDs using the Stöber method can dramatically increase the spin relaxation time from T1 = 320 ± 9 μs to T1 = 1.00 ± 0.06 ms. Using FT-IR and NEXAFS measurements conducted on air oxidized particles, we find that changes to surface functional groups and sp2 carbon density may be responsible for the observed enhancements to the spin relaxation rate. Finally, we use a Monte Carlo model to numerically investigate the relationship between chemical sensitivity and shell thickness and find that a shell thickness on the order of 1 nm should provide the highest sensitivity. Our findings demonstrate that the surface of FNDs can be engineered to exhibit bulk-like T1 relaxation times, in the absence of complex quantum control sequences, which is crucial to advancing biosensing and imaging applications where surface spin noise currently limits measurement precision.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.