Generation, transmission, and conversion of orbital torque by an antiferromagnetic insulator.

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Shilei Ding,Paul Noël,Gunasheel Kauwtilyaa Krishnaswamy,Niccolò Davitti,Giacomo Sala,Marzia Fantauzzi,Antonella Rossi,Pietro Gambardella
{"title":"Generation, transmission, and conversion of orbital torque by an antiferromagnetic insulator.","authors":"Shilei Ding,Paul Noël,Gunasheel Kauwtilyaa Krishnaswamy,Niccolò Davitti,Giacomo Sala,Marzia Fantauzzi,Antonella Rossi,Pietro Gambardella","doi":"10.1038/s41467-025-64273-6","DOIUrl":null,"url":null,"abstract":"Electrical control of magnetization in nanoscale devices can be significantly improved through the efficient generation of orbital currents and their conversion into spin currents. In nonmagnetic/ferromagnetic bilayers, this conversion produces a torque on the magnetization, enabling magnetization switching and dynamic manipulation. While previous studies focus on metallic ferromagnets, we demonstrate a large orbital torque and enhanced orbital-to-spin conversion by an antiferromagnetic insulating CoO layer. Measurements in CuOx/CoO/Co trilayers show that inserting CoO reverses the torque's sign and triples its magnitude compared to CuOx/Co. This behaviour stems from the inverted oxygen gradient at the CuOx/CoO interface and CoO's high orbital multiplicity, which favours the transmission of orbital momenta and efficient orbital-to-spin conversion. At low temperatures, the onset of antiferromagnetic order induces a further many-fold increase of the torque, which we attribute to the efficient excitation and propagation of spin-orbit excitons induced by magnetic coupling. Comparative measurements of CuOx/NiO/Co and CuOx/MnO/Co trilayers show that the torque efficiency scales with the orbital momentum of the Co2+, Ni2+, and Mn2+ ions in the antiferromagnet. These results reveal that antiferromagnetic insulators like CoO provide highly effective orbital-to-spin transduction, combining orbital torque and exchange bias functionalities to improve the performance of spintronic devices.","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"55 1","pages":"9239"},"PeriodicalIF":15.7000,"publicationDate":"2025-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-64273-6","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Electrical control of magnetization in nanoscale devices can be significantly improved through the efficient generation of orbital currents and their conversion into spin currents. In nonmagnetic/ferromagnetic bilayers, this conversion produces a torque on the magnetization, enabling magnetization switching and dynamic manipulation. While previous studies focus on metallic ferromagnets, we demonstrate a large orbital torque and enhanced orbital-to-spin conversion by an antiferromagnetic insulating CoO layer. Measurements in CuOx/CoO/Co trilayers show that inserting CoO reverses the torque's sign and triples its magnitude compared to CuOx/Co. This behaviour stems from the inverted oxygen gradient at the CuOx/CoO interface and CoO's high orbital multiplicity, which favours the transmission of orbital momenta and efficient orbital-to-spin conversion. At low temperatures, the onset of antiferromagnetic order induces a further many-fold increase of the torque, which we attribute to the efficient excitation and propagation of spin-orbit excitons induced by magnetic coupling. Comparative measurements of CuOx/NiO/Co and CuOx/MnO/Co trilayers show that the torque efficiency scales with the orbital momentum of the Co2+, Ni2+, and Mn2+ ions in the antiferromagnet. These results reveal that antiferromagnetic insulators like CoO provide highly effective orbital-to-spin transduction, combining orbital torque and exchange bias functionalities to improve the performance of spintronic devices.
反铁磁绝缘体轨道转矩的产生、传输和转换。
通过有效地产生轨道电流并将其转换为自旋电流,可以显著改善纳米器件中磁化的电气控制。在非磁性/铁磁性双层中,这种转换会对磁化产生转矩,从而实现磁化开关和动态操作。虽然以前的研究主要集中在金属铁磁体上,但我们通过反铁磁绝缘CoO层证明了大的轨道扭矩和增强的轨道自旋转换。在CuOx/CoO/Co三层中进行的测量表明,与CuOx/Co相比,插入CoO可以逆转扭矩符号,并且其大小增加了两倍。这种行为源于CuOx/CoO界面上的反向氧梯度和CoO的高轨道多重性,这有利于轨道动量的传递和有效的轨道自旋转换。在低温下,反铁磁序的出现导致转矩进一步增加数倍,这归因于磁耦合引起的自旋轨道激子的有效激发和传播。对比CuOx/NiO/Co和CuOx/MnO/Co三层膜的测量结果表明,转矩效率与反铁磁体中Co2+、Ni2+和Mn2+离子的轨道动量有关。这些结果表明,像CoO这样的反铁磁绝缘体提供了高效的轨道到自旋转导,结合了轨道扭矩和交换偏置功能,以提高自旋电子器件的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信