{"title":"Generation, transmission, and conversion of orbital torque by an antiferromagnetic insulator.","authors":"Shilei Ding,Paul Noël,Gunasheel Kauwtilyaa Krishnaswamy,Niccolò Davitti,Giacomo Sala,Marzia Fantauzzi,Antonella Rossi,Pietro Gambardella","doi":"10.1038/s41467-025-64273-6","DOIUrl":null,"url":null,"abstract":"Electrical control of magnetization in nanoscale devices can be significantly improved through the efficient generation of orbital currents and their conversion into spin currents. In nonmagnetic/ferromagnetic bilayers, this conversion produces a torque on the magnetization, enabling magnetization switching and dynamic manipulation. While previous studies focus on metallic ferromagnets, we demonstrate a large orbital torque and enhanced orbital-to-spin conversion by an antiferromagnetic insulating CoO layer. Measurements in CuOx/CoO/Co trilayers show that inserting CoO reverses the torque's sign and triples its magnitude compared to CuOx/Co. This behaviour stems from the inverted oxygen gradient at the CuOx/CoO interface and CoO's high orbital multiplicity, which favours the transmission of orbital momenta and efficient orbital-to-spin conversion. At low temperatures, the onset of antiferromagnetic order induces a further many-fold increase of the torque, which we attribute to the efficient excitation and propagation of spin-orbit excitons induced by magnetic coupling. Comparative measurements of CuOx/NiO/Co and CuOx/MnO/Co trilayers show that the torque efficiency scales with the orbital momentum of the Co2+, Ni2+, and Mn2+ ions in the antiferromagnet. These results reveal that antiferromagnetic insulators like CoO provide highly effective orbital-to-spin transduction, combining orbital torque and exchange bias functionalities to improve the performance of spintronic devices.","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"55 1","pages":"9239"},"PeriodicalIF":15.7000,"publicationDate":"2025-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-64273-6","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Electrical control of magnetization in nanoscale devices can be significantly improved through the efficient generation of orbital currents and their conversion into spin currents. In nonmagnetic/ferromagnetic bilayers, this conversion produces a torque on the magnetization, enabling magnetization switching and dynamic manipulation. While previous studies focus on metallic ferromagnets, we demonstrate a large orbital torque and enhanced orbital-to-spin conversion by an antiferromagnetic insulating CoO layer. Measurements in CuOx/CoO/Co trilayers show that inserting CoO reverses the torque's sign and triples its magnitude compared to CuOx/Co. This behaviour stems from the inverted oxygen gradient at the CuOx/CoO interface and CoO's high orbital multiplicity, which favours the transmission of orbital momenta and efficient orbital-to-spin conversion. At low temperatures, the onset of antiferromagnetic order induces a further many-fold increase of the torque, which we attribute to the efficient excitation and propagation of spin-orbit excitons induced by magnetic coupling. Comparative measurements of CuOx/NiO/Co and CuOx/MnO/Co trilayers show that the torque efficiency scales with the orbital momentum of the Co2+, Ni2+, and Mn2+ ions in the antiferromagnet. These results reveal that antiferromagnetic insulators like CoO provide highly effective orbital-to-spin transduction, combining orbital torque and exchange bias functionalities to improve the performance of spintronic devices.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.