Beyond Volcano Top of Transition Metal‐Based Electrocatalysts Triggered by Spin State Modulation

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yucheng Lv, Zhi Fang, Linlin Zhou, Puyu Du, Zeyu Gao, Wanting Zhao, Xinmei Hou, Yanghui Lu, Wensheng Yan, Kai Chen, Song Gao, Yanglong Hou
{"title":"Beyond Volcano Top of Transition Metal‐Based Electrocatalysts Triggered by Spin State Modulation","authors":"Yucheng Lv, Zhi Fang, Linlin Zhou, Puyu Du, Zeyu Gao, Wanting Zhao, Xinmei Hou, Yanghui Lu, Wensheng Yan, Kai Chen, Song Gao, Yanglong Hou","doi":"10.1002/adfm.202520395","DOIUrl":null,"url":null,"abstract":"Although modulating the spin state of transition metal (TM)‐based catalysts has emerged as a strategy to improve the sluggish kinetics of oxygen evolution reaction (OER), the quantitative correlation between spin state and OER activity remains elusive, especially at the experimental level. This hinders the rational design of high‐performance electrocatalysts. Here, ferromagnetic CoSe<jats:sub>2</jats:sub> polycrystalline nanoparticles by hydrothermal and vapor anion exchange methods are synthesized. Zn with various concentrations is doped to regulate the spin quantum number (<jats:italic>S</jats:italic>) of Co. The results show that the saturation magnetization of Co<jats:sub>0.9</jats:sub>Zn<jats:sub>0.1</jats:sub>Se<jats:sub>2</jats:sub>, as a macroscopic feature of <jats:italic>S</jats:italic>, exhibits a remarkable 18‐fold enhancement from 0.74 to 14.2 emu g<jats:sup>−1</jats:sup>. Such enhanced <jats:italic>S</jats:italic> achieves an extraordinary enhancement of OER activity by 448%, surpassing its traditional volcano top. Meanwhile, the OER activity demonstrates a strong linear relationship with <jats:italic>S</jats:italic>, clarifying the effect of total <jats:italic>S</jats:italic> in bulk on the surface active sites. This work systematically quantifies the spin‐catalysis relationship and formulates the guidelines for precision design of spin‐optimized electrocatalysts.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"138 1","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202520395","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Although modulating the spin state of transition metal (TM)‐based catalysts has emerged as a strategy to improve the sluggish kinetics of oxygen evolution reaction (OER), the quantitative correlation between spin state and OER activity remains elusive, especially at the experimental level. This hinders the rational design of high‐performance electrocatalysts. Here, ferromagnetic CoSe2 polycrystalline nanoparticles by hydrothermal and vapor anion exchange methods are synthesized. Zn with various concentrations is doped to regulate the spin quantum number (S) of Co. The results show that the saturation magnetization of Co0.9Zn0.1Se2, as a macroscopic feature of S, exhibits a remarkable 18‐fold enhancement from 0.74 to 14.2 emu g−1. Such enhanced S achieves an extraordinary enhancement of OER activity by 448%, surpassing its traditional volcano top. Meanwhile, the OER activity demonstrates a strong linear relationship with S, clarifying the effect of total S in bulk on the surface active sites. This work systematically quantifies the spin‐catalysis relationship and formulates the guidelines for precision design of spin‐optimized electrocatalysts.
自旋态调制触发过渡金属基电催化剂的研究
虽然调节过渡金属(TM)基催化剂的自旋状态已成为改善缓慢的析氧反应(OER)动力学的一种策略,但自旋状态与OER活性之间的定量相关性仍然难以捉摸,特别是在实验水平上。这阻碍了高性能电催化剂的合理设计。本文采用水热法和蒸汽阴离子交换法合成了铁磁性CoSe2多晶纳米颗粒。不同浓度的Zn掺杂可以调节Co的自旋量子数(S)。结果表明,作为S的宏观特征,Co0.9Zn0.1Se2的饱和磁化强度从0.74 emu g−1显著提高到14.2 emu g−1,提高了18倍。这种增强的S实现了OER活动的非凡增强,提高了448%,超过了传统的火山顶部。同时,OER活性与S呈较强的线性关系,阐明了总体S对表面活性位点的影响。这项工作系统地量化了自旋催化关系,并为自旋优化电催化剂的精确设计制定了指导方针。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信