Multi-scale correlation model: Theoretical analysis of the high-performance sensing mechanism of FeNx@TP-GDY for SF6 decomposition products

IF 6.9 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Jia-Yao Yuan, Shun-Yu Wang, Zhi-Gang Shao
{"title":"Multi-scale correlation model: Theoretical analysis of the high-performance sensing mechanism of FeNx@TP-GDY for SF6 decomposition products","authors":"Jia-Yao Yuan, Shun-Yu Wang, Zhi-Gang Shao","doi":"10.1016/j.apsusc.2025.164917","DOIUrl":null,"url":null,"abstract":"Sulfur hexafluoride (SF<span><math><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">6</mn></mrow></msub></math></span>) is widely used in electrical insulating switches. However, the aging of equipment causes SF<span><math><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">6</mn></mrow></msub></math></span> decomposition and produces harmful gases such as H<span><math><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></span>S and SO<span><math><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></span>. This study investigates the adsorption behavior and sensing mechanism of SF<span><math><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">6</mn></mrow></msub></math></span> decomposition products (SO<span><math><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></span> and H<span><math><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></span>S) on FeN<span><math><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mi is=\"true\">x</mi></mrow></msub></math></span>@TP-GDY (x = 0, 1, 2) surfaces using density functional theory. We employ an innovative dual-site modification strategy to modify TP-GDY. Specifically, transition metal atoms are embedded into the substrate, and neighboring atoms are substituted with N. The results indicate that the coordination number of N atoms significantly affects the position of the d band center of Fe. By analyzing the frontier Wannier orbitals of Fe in the three materials, FeN<sub>2</sub>@TP-GDY shows stronger interaction due to greater overlap between the d<span><math><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><msup is=\"true\"><mrow is=\"true\"><mi is=\"true\">x</mi></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msup><mo is=\"true\">−</mo><msup is=\"true\"><mrow is=\"true\"><mi is=\"true\">y</mi></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msup></mrow></msub></math></span> orbital of Fe and the O p<span><math><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mi is=\"true\">z</mi></mrow></msub></math></span> orbital. However, the response value of FeN<span><math><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mi is=\"true\">x</mi></mrow></msub></math></span>@TP-GDY decreases with increasing N doping. Fe@TP-GDY exhibits excellent sensing response to SO<span><math><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></span> (8467.5%) and H<span><math><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></span>S (15209.6%) at room temperature, with a recovery time of only 22.4 s for H<span><math><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></span>S. A multiscale “coordination–electronic–response” model is proposed to guide the design of TP-GDY sensors. Fe@TP-GDY shows great potential for early and real-time dual-gas fault monitoring in SF<span><math><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">6</mn></mrow></msub></math></span>-insulated equipment.","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"13 1","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2025-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.apsusc.2025.164917","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Sulfur hexafluoride (SF6) is widely used in electrical insulating switches. However, the aging of equipment causes SF6 decomposition and produces harmful gases such as H2S and SO2. This study investigates the adsorption behavior and sensing mechanism of SF6 decomposition products (SO2 and H2S) on FeNx@TP-GDY (x = 0, 1, 2) surfaces using density functional theory. We employ an innovative dual-site modification strategy to modify TP-GDY. Specifically, transition metal atoms are embedded into the substrate, and neighboring atoms are substituted with N. The results indicate that the coordination number of N atoms significantly affects the position of the d band center of Fe. By analyzing the frontier Wannier orbitals of Fe in the three materials, FeN2@TP-GDY shows stronger interaction due to greater overlap between the dx2y2 orbital of Fe and the O pz orbital. However, the response value of FeNx@TP-GDY decreases with increasing N doping. Fe@TP-GDY exhibits excellent sensing response to SO2 (8467.5%) and H2S (15209.6%) at room temperature, with a recovery time of only 22.4 s for H2S. A multiscale “coordination–electronic–response” model is proposed to guide the design of TP-GDY sensors. Fe@TP-GDY shows great potential for early and real-time dual-gas fault monitoring in SF6-insulated equipment.

Abstract Image

多尺度关联模型:FeNx@TP-GDY对SF6分解产物的高效感知机理的理论分析
六氟化硫(SF6)广泛用于电气绝缘开关。但设备老化导致SF6分解,产生H2S、SO2等有害气体。本研究利用密度泛函理论研究了SF6分解产物(SO2和H2S)在FeNx@TP-GDY (x = 0,1,2)表面的吸附行为和传感机理。我们采用一种创新的双位点修饰策略来修饰TP-GDY。结果表明,N原子的配位数对Fe的d带中心位置有显著影响。通过分析三种材料中Fe的前沿万尼尔轨道,FeN2@TP-GDY显示出更强的相互作用,这是由于Fe的dx2−y2轨道与O pz轨道之间有更大的重叠。而FeNx@TP-GDY的响应值随着N掺杂量的增加而减小。Fe@TP-GDY在室温下对SO2(8467.5%)和H2S(15209.6%)具有良好的传感响应,对H2S的恢复时间仅为22.4 s。提出了一个多尺度“协调-电子-响应”模型来指导TP-GDY传感器的设计。Fe@TP-GDY在sf6绝缘设备双气故障的早期实时监测中具有很大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Surface Science
Applied Surface Science 工程技术-材料科学:膜
CiteScore
12.50
自引率
7.50%
发文量
3393
审稿时长
67 days
期刊介绍: Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信