{"title":"Multi-scale correlation model: Theoretical analysis of the high-performance sensing mechanism of FeNx@TP-GDY for SF6 decomposition products","authors":"Jia-Yao Yuan, Shun-Yu Wang, Zhi-Gang Shao","doi":"10.1016/j.apsusc.2025.164917","DOIUrl":null,"url":null,"abstract":"Sulfur hexafluoride (SF<span><math><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">6</mn></mrow></msub></math></span>) is widely used in electrical insulating switches. However, the aging of equipment causes SF<span><math><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">6</mn></mrow></msub></math></span> decomposition and produces harmful gases such as H<span><math><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></span>S and SO<span><math><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></span>. This study investigates the adsorption behavior and sensing mechanism of SF<span><math><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">6</mn></mrow></msub></math></span> decomposition products (SO<span><math><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></span> and H<span><math><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></span>S) on FeN<span><math><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mi is=\"true\">x</mi></mrow></msub></math></span>@TP-GDY (x = 0, 1, 2) surfaces using density functional theory. We employ an innovative dual-site modification strategy to modify TP-GDY. Specifically, transition metal atoms are embedded into the substrate, and neighboring atoms are substituted with N. The results indicate that the coordination number of N atoms significantly affects the position of the d band center of Fe. By analyzing the frontier Wannier orbitals of Fe in the three materials, FeN<sub>2</sub>@TP-GDY shows stronger interaction due to greater overlap between the d<span><math><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><msup is=\"true\"><mrow is=\"true\"><mi is=\"true\">x</mi></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msup><mo is=\"true\">−</mo><msup is=\"true\"><mrow is=\"true\"><mi is=\"true\">y</mi></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msup></mrow></msub></math></span> orbital of Fe and the O p<span><math><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mi is=\"true\">z</mi></mrow></msub></math></span> orbital. However, the response value of FeN<span><math><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mi is=\"true\">x</mi></mrow></msub></math></span>@TP-GDY decreases with increasing N doping. Fe@TP-GDY exhibits excellent sensing response to SO<span><math><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></span> (8467.5%) and H<span><math><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></span>S (15209.6%) at room temperature, with a recovery time of only 22.4 s for H<span><math><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></span>S. A multiscale “coordination–electronic–response” model is proposed to guide the design of TP-GDY sensors. Fe@TP-GDY shows great potential for early and real-time dual-gas fault monitoring in SF<span><math><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">6</mn></mrow></msub></math></span>-insulated equipment.","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"13 1","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2025-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.apsusc.2025.164917","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Sulfur hexafluoride (SF) is widely used in electrical insulating switches. However, the aging of equipment causes SF decomposition and produces harmful gases such as HS and SO. This study investigates the adsorption behavior and sensing mechanism of SF decomposition products (SO and HS) on FeN@TP-GDY (x = 0, 1, 2) surfaces using density functional theory. We employ an innovative dual-site modification strategy to modify TP-GDY. Specifically, transition metal atoms are embedded into the substrate, and neighboring atoms are substituted with N. The results indicate that the coordination number of N atoms significantly affects the position of the d band center of Fe. By analyzing the frontier Wannier orbitals of Fe in the three materials, FeN2@TP-GDY shows stronger interaction due to greater overlap between the d orbital of Fe and the O p orbital. However, the response value of FeN@TP-GDY decreases with increasing N doping. Fe@TP-GDY exhibits excellent sensing response to SO (8467.5%) and HS (15209.6%) at room temperature, with a recovery time of only 22.4 s for HS. A multiscale “coordination–electronic–response” model is proposed to guide the design of TP-GDY sensors. Fe@TP-GDY shows great potential for early and real-time dual-gas fault monitoring in SF-insulated equipment.
期刊介绍:
Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.