Zhurun Ji,Mark E Barber,Ziyan Zhu,Carlos R Kometter,Jiachen Yu,Kenji Watanabe,Takashi Taniguchi,Mengkun Liu,Thomas P Devereaux,Benjamin E Feldman,Zhixun Shen
{"title":"Local microwave sensing of excitons and their electrical environment.","authors":"Zhurun Ji,Mark E Barber,Ziyan Zhu,Carlos R Kometter,Jiachen Yu,Kenji Watanabe,Takashi Taniguchi,Mengkun Liu,Thomas P Devereaux,Benjamin E Feldman,Zhixun Shen","doi":"10.1038/s41467-025-64280-7","DOIUrl":null,"url":null,"abstract":"Excitons in atomically thin transition metal dichalcogenides (TMDs) possess intriguing optical properties, drawing interest for both technology and fundamental research. However, as the demands for nanodevice applications and the exploration of fundamental physics push toward smaller, subwavelength scales, studying them locally is challenging. In this work, we introduce a cryogenic scanning probe photoelectrical sensing technique, termed exciton-resonant microwave impedance microscopy (ER-MIM), to measure the excitonic responses in a monolayer MoSe2 device at 1.5K. From the microwave signal changes, we identify exciton polarons and their Rydberg states. Building on these observations, we systemically reveal the local and nonlocal effects of carrier density, inhomogeneous electric fields, as well as dielectric screening on excitons, beyond the reach of conventional probes. By further integrating deep learning techniques, we precisely extracted the electrical parameters surrounding excitons, demonstrating a quantified, exciton-assisted nanoscale electrometry. Our results provide new insight into exciton-environment interactions, establish ER-MIM as a powerful optoelectronic sensing platform, and open avenues for exciton-based quantum control and device technologies.","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"54 1","pages":"9236"},"PeriodicalIF":15.7000,"publicationDate":"2025-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-64280-7","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Excitons in atomically thin transition metal dichalcogenides (TMDs) possess intriguing optical properties, drawing interest for both technology and fundamental research. However, as the demands for nanodevice applications and the exploration of fundamental physics push toward smaller, subwavelength scales, studying them locally is challenging. In this work, we introduce a cryogenic scanning probe photoelectrical sensing technique, termed exciton-resonant microwave impedance microscopy (ER-MIM), to measure the excitonic responses in a monolayer MoSe2 device at 1.5K. From the microwave signal changes, we identify exciton polarons and their Rydberg states. Building on these observations, we systemically reveal the local and nonlocal effects of carrier density, inhomogeneous electric fields, as well as dielectric screening on excitons, beyond the reach of conventional probes. By further integrating deep learning techniques, we precisely extracted the electrical parameters surrounding excitons, demonstrating a quantified, exciton-assisted nanoscale electrometry. Our results provide new insight into exciton-environment interactions, establish ER-MIM as a powerful optoelectronic sensing platform, and open avenues for exciton-based quantum control and device technologies.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.