Bridget M McVeigh,José J De Jesús-Pérez,Dirk H Siepe,Prerana Gogoi,Shrawan Kumar Mageswaran,Marian Kalocsay,Elaine M Mihelc,Vera Y Moiseenkova-Bell
{"title":"Visualization of lysosomal membrane proteins by cryo electron tomography.","authors":"Bridget M McVeigh,José J De Jesús-Pérez,Dirk H Siepe,Prerana Gogoi,Shrawan Kumar Mageswaran,Marian Kalocsay,Elaine M Mihelc,Vera Y Moiseenkova-Bell","doi":"10.1038/s41467-025-64314-0","DOIUrl":null,"url":null,"abstract":"Lysosomes are essential organelles for cellular homeostasis and signaling, with dysfunction linked to neurological disorders, lysosomal storage diseases, and cancer. While proteomics has advanced our understanding of lysosomal composition, the structural characterization of lysosomal membrane proteins in their native environment remains a significant challenge. Here, we developed a cryo electron tomography workflow to visualize lysosomal membrane proteins within intact, native lysosomal membranes. We isolated endolysosomes by independently targeting two lysosomal membrane proteins, transient receptor potential mucolipin 1 and transmembrane protein 192, enriching organelles that exhibited the expected morphology and proteomic composition of the endolysosomal system. Sub-tomogram averaging enabled the structural refinement of key membrane and membrane-associated proteins, including V-ATPase, Flotillin, and Clathrin, directly within the lysosomal membrane, revealing their heterogeneous distribution across endolysosomal organelles. By integrating proteomics with structural biology, our workflow establishes a powerful platform for studying lysosomal membrane protein function in health and disease, paving the way for future discoveries in membrane-associated lysosomal mechanisms.","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"19 1","pages":"9234"},"PeriodicalIF":15.7000,"publicationDate":"2025-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-64314-0","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Lysosomes are essential organelles for cellular homeostasis and signaling, with dysfunction linked to neurological disorders, lysosomal storage diseases, and cancer. While proteomics has advanced our understanding of lysosomal composition, the structural characterization of lysosomal membrane proteins in their native environment remains a significant challenge. Here, we developed a cryo electron tomography workflow to visualize lysosomal membrane proteins within intact, native lysosomal membranes. We isolated endolysosomes by independently targeting two lysosomal membrane proteins, transient receptor potential mucolipin 1 and transmembrane protein 192, enriching organelles that exhibited the expected morphology and proteomic composition of the endolysosomal system. Sub-tomogram averaging enabled the structural refinement of key membrane and membrane-associated proteins, including V-ATPase, Flotillin, and Clathrin, directly within the lysosomal membrane, revealing their heterogeneous distribution across endolysosomal organelles. By integrating proteomics with structural biology, our workflow establishes a powerful platform for studying lysosomal membrane protein function in health and disease, paving the way for future discoveries in membrane-associated lysosomal mechanisms.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.