Hongrui He, Heyi Liang, Miaoqi Chu, Zhang Jiang, Juan J. de Pablo, Matthew V. Tirrell, Suresh Narayanan, Wei Chen
{"title":"Bridging microscopic dynamics and rheology in the yielding of charged colloidal suspensions","authors":"Hongrui He, Heyi Liang, Miaoqi Chu, Zhang Jiang, Juan J. de Pablo, Matthew V. Tirrell, Suresh Narayanan, Wei Chen","doi":"10.1073/pnas.2514216122","DOIUrl":null,"url":null,"abstract":"The yielding of soft materials is critical to many natural and industrial processes, yet experimental insights into microscopic aspects of yielding are limited. This study combines angle X-ray scattering, X-ray photon correlation spectroscopy, and in situ rheology (Rheo-SAXS-XPCS) with fast lubrication dynamics simulations to examine how interparticle interactions influence yielding in charged colloidal suspensions. By tuning attraction through salt addition, we compare repulsive and attractive systems under deformation. Repulsive suspensions yield uniformly with Andrade-like creep and minimal structural change. In contrast, attractive suspensions show complex behaviors, including shear banding, delayed yielding, and resolidification, governed by transient dynamics at shear band interfaces. These results directly link microscopic particle dynamics to macroscopic flow and demonstrate how interaction potentials control rheological behavior. This work offers a framework for designing soft materials with tailored properties for applications in coatings, food processing, drug delivery, and other technologies requiring precise mechanical control.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"50 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2514216122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The yielding of soft materials is critical to many natural and industrial processes, yet experimental insights into microscopic aspects of yielding are limited. This study combines angle X-ray scattering, X-ray photon correlation spectroscopy, and in situ rheology (Rheo-SAXS-XPCS) with fast lubrication dynamics simulations to examine how interparticle interactions influence yielding in charged colloidal suspensions. By tuning attraction through salt addition, we compare repulsive and attractive systems under deformation. Repulsive suspensions yield uniformly with Andrade-like creep and minimal structural change. In contrast, attractive suspensions show complex behaviors, including shear banding, delayed yielding, and resolidification, governed by transient dynamics at shear band interfaces. These results directly link microscopic particle dynamics to macroscopic flow and demonstrate how interaction potentials control rheological behavior. This work offers a framework for designing soft materials with tailored properties for applications in coatings, food processing, drug delivery, and other technologies requiring precise mechanical control.
期刊介绍:
The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.