Kurt Taretto, Herman Heffner, Jose Roberto Bautista‐Quijano, Matías Córdoba, Enzo Olguín, Agustín Bou, Yitian Du, Boris Rivkin, Yana Vaynzof
{"title":"Simple Detection of Imperfect Charge Extraction at Contacts – Application to Perovskite Solar Cells","authors":"Kurt Taretto, Herman Heffner, Jose Roberto Bautista‐Quijano, Matías Córdoba, Enzo Olguín, Agustín Bou, Yitian Du, Boris Rivkin, Yana Vaynzof","doi":"10.1002/aenm.202504734","DOIUrl":null,"url":null,"abstract":"Understanding and quantifying charge collection at interfaces is essential for optimizing solar cell performance, particularly as interfacial losses increasingly limit device efficiency. Despite their importance, interfacial collection efficiencies are difficult to estimate directly from standard measurements. Here, a novel analytical method is presented to calculate optoelectronic parameters based on the internal quantum efficiency (IQE) at the weak and strong absorption regimes. This approach allows to determine meaningful physical parameters such as the average and front‐surface collection efficiencies, revealing imperfect carrier collection in perovskite solar cells. By applying the method to devices with and without an electron transport layer, clear differences in interfacial extraction efficiency are revealed, showcasing the method's utility. The results suggest that the total collection cannot be described by simple multiplicative or additive electron and hole collection models, but rather reflects a more nuanced interplay governed by extraction velocities. The proposed methodology offers rapid evaluation of device interfaces without relying on transient techniques or traditional IQE models in which perfect carrier extraction is assumed.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"27 1","pages":""},"PeriodicalIF":26.0000,"publicationDate":"2025-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202504734","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding and quantifying charge collection at interfaces is essential for optimizing solar cell performance, particularly as interfacial losses increasingly limit device efficiency. Despite their importance, interfacial collection efficiencies are difficult to estimate directly from standard measurements. Here, a novel analytical method is presented to calculate optoelectronic parameters based on the internal quantum efficiency (IQE) at the weak and strong absorption regimes. This approach allows to determine meaningful physical parameters such as the average and front‐surface collection efficiencies, revealing imperfect carrier collection in perovskite solar cells. By applying the method to devices with and without an electron transport layer, clear differences in interfacial extraction efficiency are revealed, showcasing the method's utility. The results suggest that the total collection cannot be described by simple multiplicative or additive electron and hole collection models, but rather reflects a more nuanced interplay governed by extraction velocities. The proposed methodology offers rapid evaluation of device interfaces without relying on transient techniques or traditional IQE models in which perfect carrier extraction is assumed.
期刊介绍:
Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small.
With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics.
The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.