{"title":"The vacuolar transporters MaMATE11 and MaMATE14 affect blue flower coloration in grape hyacinth (Muscari)","authors":"Xiaoyun Cao, Jingwen Xie, Xuelan Gao, Wanqi Pan, Jiaxin Gong, Lingjuan Du","doi":"10.1093/hr/uhaf270","DOIUrl":null,"url":null,"abstract":"The development of blue flower coloration involves the biosynthesis, transport, and accumulation of flavonoids in petal epidermal cells. Although the mechanisms of flavonoid biosynthesis and regulation are well understood, much less is known about the molecular basis of vacuolar anthocyanin/flavonoid sequestration. Here, we identified two tonoplast-localized MATE transporters, MaMATE11 and MaMATE14, that participate in flavonoid transport and influence the blue color of grape hyacinth petals. In vitro transport experiments revealed that both proteins transported a range of flavonoid substrates, with a preference for malonylated anthocyanins, but differed in their substrate specificity and kinetic parameters. Both MaMATE11 and MaMATE14 could complement the anthocyanin-deficient phenotype of the Arabidopsis AtDTX35 mutant, and silencing of either gene by RNA interference significantly reduced anthocyanin accumulation in petals of grape hyacinth. Expression of MaMATE11 and MaMATE14 was directly activated by the anthocyanin-biosynthesis-related transcription factors MaMybA and MaAN2, respectively, establishing a coordinated anthocyanin synthesis–transport module. These findings provide insight into mechanisms of floral coloration and flavonoid translocation in blue-pigmented species and identify valuable target genes for molecular breeding of ornamental flower colors.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"48 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticulture Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/hr/uhaf270","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
The development of blue flower coloration involves the biosynthesis, transport, and accumulation of flavonoids in petal epidermal cells. Although the mechanisms of flavonoid biosynthesis and regulation are well understood, much less is known about the molecular basis of vacuolar anthocyanin/flavonoid sequestration. Here, we identified two tonoplast-localized MATE transporters, MaMATE11 and MaMATE14, that participate in flavonoid transport and influence the blue color of grape hyacinth petals. In vitro transport experiments revealed that both proteins transported a range of flavonoid substrates, with a preference for malonylated anthocyanins, but differed in their substrate specificity and kinetic parameters. Both MaMATE11 and MaMATE14 could complement the anthocyanin-deficient phenotype of the Arabidopsis AtDTX35 mutant, and silencing of either gene by RNA interference significantly reduced anthocyanin accumulation in petals of grape hyacinth. Expression of MaMATE11 and MaMATE14 was directly activated by the anthocyanin-biosynthesis-related transcription factors MaMybA and MaAN2, respectively, establishing a coordinated anthocyanin synthesis–transport module. These findings provide insight into mechanisms of floral coloration and flavonoid translocation in blue-pigmented species and identify valuable target genes for molecular breeding of ornamental flower colors.
期刊介绍:
Horticulture Research, an open access journal affiliated with Nanjing Agricultural University, has achieved the prestigious ranking of number one in the Horticulture category of the Journal Citation Reports ™ from Clarivate, 2022. As a leading publication in the field, the journal is dedicated to disseminating original research articles, comprehensive reviews, insightful perspectives, thought-provoking comments, and valuable correspondence articles and letters to the editor. Its scope encompasses all vital aspects of horticultural plants and disciplines, such as biotechnology, breeding, cellular and molecular biology, evolution, genetics, inter-species interactions, physiology, and the origination and domestication of crops.