{"title":"Deficiencies in methionine, tryptophan, and niacin remodels intestinal transcriptome and gut microbiota in female mice.","authors":"Tomoaki Hara, Sikun Meng, Daisuke Motooka, Yasuko Arao, Yoshiko Saito, Sarah Rennie, Shizuka Uchida, Ken Ofusa, Takahiro Arai, Masamitsu Konno, Taroh Satoh, Hideshi Ishii","doi":"10.1038/s41598-025-18046-2","DOIUrl":null,"url":null,"abstract":"<p><p>Caloric restriction is well-established as a robust intervention that may extend lifespan and improve metabolic health across species with effects that are increasingly attributed to both host metabolic remodeling and alterations in the gut microbiota. Recent studies suggest that restricting specific dietary components can replicate these benefits. While methionine and branched-chain amino acid restriction improve metabolism and modulate the gut microbiome, the effects of other nutrients remain unclear. Here, we explore the effects of methionine, tryptophan and niacin deprivation on host intestinal gene expression and gut microbiota using female murine models. Through transcriptomic analysis of the intestinal tissue, we found that transient dietary restriction of methionine, tryptophan, and niacin induced significant changes in intestinal gene expression, particularly in genes involved in oxidative phosphorylation and ATP production. Single-cell analysis revealed that dietary restriction of those nutrients led to an increase in intestinal immune cell populations. Gut microbiota profiling also revealed that transient deprivation of those nutrients resulted in changes in microbial composition, with an increased relative abundance of Lactobacillus species observed in some cases. Our findings highlight the potential of targeted nutrient restriction as a strategy to reprogram host-microbiome interactions.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"36155"},"PeriodicalIF":3.9000,"publicationDate":"2025-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12533107/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-18046-2","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Caloric restriction is well-established as a robust intervention that may extend lifespan and improve metabolic health across species with effects that are increasingly attributed to both host metabolic remodeling and alterations in the gut microbiota. Recent studies suggest that restricting specific dietary components can replicate these benefits. While methionine and branched-chain amino acid restriction improve metabolism and modulate the gut microbiome, the effects of other nutrients remain unclear. Here, we explore the effects of methionine, tryptophan and niacin deprivation on host intestinal gene expression and gut microbiota using female murine models. Through transcriptomic analysis of the intestinal tissue, we found that transient dietary restriction of methionine, tryptophan, and niacin induced significant changes in intestinal gene expression, particularly in genes involved in oxidative phosphorylation and ATP production. Single-cell analysis revealed that dietary restriction of those nutrients led to an increase in intestinal immune cell populations. Gut microbiota profiling also revealed that transient deprivation of those nutrients resulted in changes in microbial composition, with an increased relative abundance of Lactobacillus species observed in some cases. Our findings highlight the potential of targeted nutrient restriction as a strategy to reprogram host-microbiome interactions.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.