Modulation of Glutamate Release by Dexmedetomidine Preserves Dendritic Spines and Alleviates Cognitive Impairment in a Murine Model of Perioperative Neurocognitive Disorder.
Yan Zhang, Junzhao Li, Xueju Wang, Zhongyu Zhang, Shuai Long, Chuanyu Edward Li, Yan Liu, John Man Tak Chu, Raymond Chuen-Chung Chang, Gordon Tin-Chun Wong, Yong Zhang
{"title":"Modulation of Glutamate Release by Dexmedetomidine Preserves Dendritic Spines and Alleviates Cognitive Impairment in a Murine Model of Perioperative Neurocognitive Disorder.","authors":"Yan Zhang, Junzhao Li, Xueju Wang, Zhongyu Zhang, Shuai Long, Chuanyu Edward Li, Yan Liu, John Man Tak Chu, Raymond Chuen-Chung Chang, Gordon Tin-Chun Wong, Yong Zhang","doi":"10.1007/s12264-025-01518-w","DOIUrl":null,"url":null,"abstract":"<p><p>Perioperative neurocognitive disorders (PNDs) represent a significant challenge in the perioperative setting, while the pathophysiology of PNDs remains unclear. Utilizing a murine model of abdominal surgery, we found that abnormal glutamatergic neurotransmission in the medial prefrontal cortex (mPFC) and hippocampus contributes to postoperative cognitive impairments. Increases in the frequency of miniature excitatory postsynaptic currents in both the mPFC and CA1 neurons indicate enhanced presynaptic glutamate release while having little effect on inhibitory neurotransmission. Surgery also enhances glutamate release from presynaptic terminals in the Schaffer collateral pathway. In addition, abdominal surgery increased the activation of microglia and astrocytes, elevated central inflammatory markers, and reduced excitatory amino-acid transporter-2 expression. Dexmedetomidine significantly mitigates the postoperative cognitive deficits by reducing inflammation and preserving neuronal structural complexity and dendritic spine stability, likely through inhibiting glutamate release and enhancing its reuptake. These findings advance our understanding of the etiology of PNDs and provide hints for potential intervention.</p>","PeriodicalId":19314,"journal":{"name":"Neuroscience bulletin","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience bulletin","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12264-025-01518-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Perioperative neurocognitive disorders (PNDs) represent a significant challenge in the perioperative setting, while the pathophysiology of PNDs remains unclear. Utilizing a murine model of abdominal surgery, we found that abnormal glutamatergic neurotransmission in the medial prefrontal cortex (mPFC) and hippocampus contributes to postoperative cognitive impairments. Increases in the frequency of miniature excitatory postsynaptic currents in both the mPFC and CA1 neurons indicate enhanced presynaptic glutamate release while having little effect on inhibitory neurotransmission. Surgery also enhances glutamate release from presynaptic terminals in the Schaffer collateral pathway. In addition, abdominal surgery increased the activation of microglia and astrocytes, elevated central inflammatory markers, and reduced excitatory amino-acid transporter-2 expression. Dexmedetomidine significantly mitigates the postoperative cognitive deficits by reducing inflammation and preserving neuronal structural complexity and dendritic spine stability, likely through inhibiting glutamate release and enhancing its reuptake. These findings advance our understanding of the etiology of PNDs and provide hints for potential intervention.
期刊介绍:
Neuroscience Bulletin (NB), the official journal of the Chinese Neuroscience Society, is published monthly by Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) and Springer.
NB aims to publish research advances in the field of neuroscience and promote exchange of scientific ideas within the community. The journal publishes original papers on various topics in neuroscience and focuses on potential disease implications on the nervous system. NB welcomes research contributions on molecular, cellular, or developmental neuroscience using multidisciplinary approaches and functional strategies. We feature full-length original articles, reviews, methods, letters to the editor, insights, and research highlights. As the official journal of the Chinese Neuroscience Society, which currently has more than 12,000 members in China, NB is devoted to facilitating communications between Chinese neuroscientists and their international colleagues. The journal is recognized as the most influential publication in neuroscience research in China.