{"title":"Estimation of endonuclease activity of lyophilized CRISPR-Cas9 and sgRNA assemblies targeting HPV-16 and HPV-18 up to 18 months.","authors":"Kuldeep Sharma, Vaibhav Kumar Tamrakar, Pushpendra Singh, Anudita Bhargava, Pushpawati Thakur, Sanjay Singh Negi","doi":"10.1080/15257770.2025.2570269","DOIUrl":null,"url":null,"abstract":"<p><p>The stability of CRISPR-Cas9 endonuclease activity is essential for its effectiveness in molecular diagnostics and gene editing. Target sequences of Human Papillomavirus (HPV) types 16 and 18 were selected by generating a consensus sequence following multiple sequence alignment, to ensure high specificity. The single guide RNAs (sgRNAs) were designed by identifying Protospacer Adjacent Motif (PAM) sequences within the E6 gene of HPV-16 and HPV-18. High-fidelity DNA oligonucleotides were synthesized from Integrated DNA Technologies (IDT) and transcribed <i>in vitro</i> into single guide RNAs (sgRNAs). These sgRNAs were then assembled with Cas9 protein to form CRISPR-Cas9 ribonucleoprotein (RNP) complexes, which were subsequently lyophilized to enhance storage stability. Functional validation of the RNP complexes was performed over a period of up to 18 months using polymerase chain reaction (PCR), agarose gel electrophoresis (AGE), and SYBR Green-based real-time PCR (RT-PCR) to confirm endonuclease activity and cleavage efficiency. This study assessed the activity of lyophilized HPV-16 and HPV-18 CRISPR-Cas9-RNPs stored at 4 °C for up to 18 months. Results demonstrated that the ribonucleoprotein (RNP) complex consisting sgRNA retained significant endonuclease activity, supporting lyophilization as a viable strategy for enhancing the stability and shelf life of CRISPR-Cas9 complexes for long-term applications.</p>","PeriodicalId":19343,"journal":{"name":"Nucleosides, Nucleotides & Nucleic Acids","volume":" ","pages":"1-13"},"PeriodicalIF":1.3000,"publicationDate":"2025-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleosides, Nucleotides & Nucleic Acids","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15257770.2025.2570269","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The stability of CRISPR-Cas9 endonuclease activity is essential for its effectiveness in molecular diagnostics and gene editing. Target sequences of Human Papillomavirus (HPV) types 16 and 18 were selected by generating a consensus sequence following multiple sequence alignment, to ensure high specificity. The single guide RNAs (sgRNAs) were designed by identifying Protospacer Adjacent Motif (PAM) sequences within the E6 gene of HPV-16 and HPV-18. High-fidelity DNA oligonucleotides were synthesized from Integrated DNA Technologies (IDT) and transcribed in vitro into single guide RNAs (sgRNAs). These sgRNAs were then assembled with Cas9 protein to form CRISPR-Cas9 ribonucleoprotein (RNP) complexes, which were subsequently lyophilized to enhance storage stability. Functional validation of the RNP complexes was performed over a period of up to 18 months using polymerase chain reaction (PCR), agarose gel electrophoresis (AGE), and SYBR Green-based real-time PCR (RT-PCR) to confirm endonuclease activity and cleavage efficiency. This study assessed the activity of lyophilized HPV-16 and HPV-18 CRISPR-Cas9-RNPs stored at 4 °C for up to 18 months. Results demonstrated that the ribonucleoprotein (RNP) complex consisting sgRNA retained significant endonuclease activity, supporting lyophilization as a viable strategy for enhancing the stability and shelf life of CRISPR-Cas9 complexes for long-term applications.
期刊介绍:
Nucleosides, Nucleotides & Nucleic Acids publishes research articles, short notices, and concise, critical reviews of related topics that focus on the chemistry and biology of nucleosides, nucleotides, and nucleic acids.
Complete with experimental details, this all-inclusive journal emphasizes the synthesis, biological activities, new and improved synthetic methods, and significant observations related to new compounds.