Stefanie Zorn, Rebecca Bounds, Alice Williamson, Katherine Lawler, Ruth Hanssen, Julia Keogh, Elana Henning, Miriam Smith, Barbara A Fielding, A Margot Umpleby, Summaira Yasmeen, Maria Marti-Solano, Claudia Langenberg, Martin Wabitsch, Tinh-Hai Collet, I Sadaf Farooqi
{"title":"Obesity due to MC4R deficiency is associated with reduced cholesterol, triglycerides and cardiovascular disease risk.","authors":"Stefanie Zorn, Rebecca Bounds, Alice Williamson, Katherine Lawler, Ruth Hanssen, Julia Keogh, Elana Henning, Miriam Smith, Barbara A Fielding, A Margot Umpleby, Summaira Yasmeen, Maria Marti-Solano, Claudia Langenberg, Martin Wabitsch, Tinh-Hai Collet, I Sadaf Farooqi","doi":"10.1038/s41591-025-03976-1","DOIUrl":null,"url":null,"abstract":"<p><p>Obesity causes dyslipidemia and is a major risk factor for cardiovascular disease. However, the mechanisms coupling weight gain and lipid metabolism are poorly understood. Brain melanocortin 4 receptors (MC4Rs) regulate body weight and lipid metabolism in mice, but the relevance of these findings to humans is unclear. Here we investigated lipid levels in men and women with obesity due to MC4R deficiency. Among 7,719 people from the Genetics of Obesity Study cohort, we identified 316 probands and 144 adult family members with loss-of-function (LoF) MC4R mutations. Adults with MC4R deficiency had lower levels of total and low-density lipoprotein (LDL)-cholesterol and triglycerides than 336,728 controls from the UK Biobank, after adjusting for adiposity. Carriers of LoF MC4R variants within the UK Biobank had lower lipid levels and a lower risk of cardiovascular disease, after accounting for body weight, compared to noncarriers. After a high-fat meal, the postprandial rise in triglyceride-rich lipoproteins and metabolomic markers of fatty acid oxidation were reduced in people with MC4R deficiency compared to controls, changes that favor triglyceride storage in adipose tissue. We concluded that central MC4Rs regulate lipid metabolism and cardiovascular disease risk in humans, highlighting potential therapeutic approaches for cardiovascular risk reduction.</p>","PeriodicalId":19037,"journal":{"name":"Nature Medicine","volume":" ","pages":""},"PeriodicalIF":50.0000,"publicationDate":"2025-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41591-025-03976-1","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Obesity causes dyslipidemia and is a major risk factor for cardiovascular disease. However, the mechanisms coupling weight gain and lipid metabolism are poorly understood. Brain melanocortin 4 receptors (MC4Rs) regulate body weight and lipid metabolism in mice, but the relevance of these findings to humans is unclear. Here we investigated lipid levels in men and women with obesity due to MC4R deficiency. Among 7,719 people from the Genetics of Obesity Study cohort, we identified 316 probands and 144 adult family members with loss-of-function (LoF) MC4R mutations. Adults with MC4R deficiency had lower levels of total and low-density lipoprotein (LDL)-cholesterol and triglycerides than 336,728 controls from the UK Biobank, after adjusting for adiposity. Carriers of LoF MC4R variants within the UK Biobank had lower lipid levels and a lower risk of cardiovascular disease, after accounting for body weight, compared to noncarriers. After a high-fat meal, the postprandial rise in triglyceride-rich lipoproteins and metabolomic markers of fatty acid oxidation were reduced in people with MC4R deficiency compared to controls, changes that favor triglyceride storage in adipose tissue. We concluded that central MC4Rs regulate lipid metabolism and cardiovascular disease risk in humans, highlighting potential therapeutic approaches for cardiovascular risk reduction.
期刊介绍:
Nature Medicine is a monthly journal publishing original peer-reviewed research in all areas of medicine. The publication focuses on originality, timeliness, interdisciplinary interest, and the impact on improving human health. In addition to research articles, Nature Medicine also publishes commissioned content such as News, Reviews, and Perspectives. This content aims to provide context for the latest advances in translational and clinical research, reaching a wide audience of M.D. and Ph.D. readers. All editorial decisions for the journal are made by a team of full-time professional editors.
Nature Medicine consider all types of clinical research, including:
-Case-reports and small case series
-Clinical trials, whether phase 1, 2, 3 or 4
-Observational studies
-Meta-analyses
-Biomarker studies
-Public and global health studies
Nature Medicine is also committed to facilitating communication between translational and clinical researchers. As such, we consider “hybrid” studies with preclinical and translational findings reported alongside data from clinical studies.