High-temperature oxide ceramic microwave absorber enabled by thermionic migration mediated by electron delocalization.

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Ruopeng Cui, Zewen Duan, Yi Li, Xuefei Zhang, Xiangyang Liu, Guang Yang, Lihong Yang, Biao Zhao, Chunlei Wan
{"title":"High-temperature oxide ceramic microwave absorber enabled by thermionic migration mediated by electron delocalization.","authors":"Ruopeng Cui, Zewen Duan, Yi Li, Xuefei Zhang, Xiangyang Liu, Guang Yang, Lihong Yang, Biao Zhao, Chunlei Wan","doi":"10.1038/s41467-025-64208-1","DOIUrl":null,"url":null,"abstract":"<p><p>The escalating demand for long-term high-temperature microwave-absorbing materials (HTMAMs) in high-speed aerospace stealth is hindered by limitations such as magnetic loss degradation or oxidation risks. Herein, we introduce rare earth zirconate ceramics that exhibit air stability up to 1600 °C. Abundant oxygen vacancies significantly enhance permittivity and thus microwave-absorbing performance through activated thermionic migration at elevated temperatures. Moreover, the thermionic-facilitated permittivity can be meticulously modulated by electron delocalization, with the extent governed by lattice disorder. We demonstrate this concept through a dual-layer Er<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub>/Gd<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub> structure to further optimize impedance matching, achieving an ultra-wide bandwidth (8.27 GHz) and strong absorption (-64.61 dB) at ultrathin thicknesses under 1.2 mm at 600 °C mainly by macroscopic interfacial resonance, alongside an ultralow thermal conductivity (1.61 W•m<sup>-1</sup>•K<sup>-1</sup>). This work presents an innovative approach to design high-performance and anti-oxidative HTMAMs through thermionic migration tuned by electron delocalization, advancing structural-functional integrated materials for extreme environments.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"16 1","pages":"9179"},"PeriodicalIF":15.7000,"publicationDate":"2025-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12533133/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-64208-1","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The escalating demand for long-term high-temperature microwave-absorbing materials (HTMAMs) in high-speed aerospace stealth is hindered by limitations such as magnetic loss degradation or oxidation risks. Herein, we introduce rare earth zirconate ceramics that exhibit air stability up to 1600 °C. Abundant oxygen vacancies significantly enhance permittivity and thus microwave-absorbing performance through activated thermionic migration at elevated temperatures. Moreover, the thermionic-facilitated permittivity can be meticulously modulated by electron delocalization, with the extent governed by lattice disorder. We demonstrate this concept through a dual-layer Er2Zr2O7/Gd2Zr2O7 structure to further optimize impedance matching, achieving an ultra-wide bandwidth (8.27 GHz) and strong absorption (-64.61 dB) at ultrathin thicknesses under 1.2 mm at 600 °C mainly by macroscopic interfacial resonance, alongside an ultralow thermal conductivity (1.61 W•m-1•K-1). This work presents an innovative approach to design high-performance and anti-oxidative HTMAMs through thermionic migration tuned by electron delocalization, advancing structural-functional integrated materials for extreme environments.

由电子离域介导的热离子迁移实现的高温氧化陶瓷微波吸收体。
高速航空航天隐身对长期高温微波吸收材料(HTMAMs)的需求不断增长,但磁性损耗降解或氧化风险等限制阻碍了HTMAMs的发展。在这里,我们介绍稀土锆酸盐陶瓷,表现出高达1600°C的空气稳定性。丰富的氧空位显著提高介电常数,从而通过激活热离子迁移在高温下的微波吸收性能。此外,热激介电常数可以通过电子离域精细调制,其程度由晶格无序控制。我们通过双层Er2Zr2O7/Gd2Zr2O7结构验证了这一概念,以进一步优化阻抗匹配,在600°C下,主要通过宏观界面共振实现了超宽带宽(8.27 GHz)和超薄厚度(1.2 mm)下的强吸收(-64.61 dB),以及超低导热系数(1.61 W•m-1•K-1)。这项工作提出了一种创新的方法来设计高性能和抗氧化HTMAMs,通过电子离域调节热离子迁移,推进极端环境下的结构功能集成材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信