Digital holographic microscopy for rapid bacteria segmentation and counting in microfluidic cartridges: basic considerations and limitations for diagnostic application.

IF 2.9 3区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Journal of Biomedical Optics Pub Date : 2025-10-01 Epub Date: 2025-10-15 DOI:10.1117/1.JBO.30.10.106501
Hussein Kamel, Julian Schmid, Moaaz Rauf Nizami, Igor Alekseenko, Florian Hausladen, Daniel Claus, Rainer Wittig, Damien P Kelly
{"title":"Digital holographic microscopy for rapid bacteria segmentation and counting in microfluidic cartridges: basic considerations and limitations for diagnostic application.","authors":"Hussein Kamel, Julian Schmid, Moaaz Rauf Nizami, Igor Alekseenko, Florian Hausladen, Daniel Claus, Rainer Wittig, Damien P Kelly","doi":"10.1117/1.JBO.30.10.106501","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>Digital holographic microscopy (DHM) has proven effective for particle segmentation within a given volume, making it well-suited for rapid monitoring of bacterial growth in microfluidic cartridges-such as in single-cell-based antimicrobial susceptibility testing assays. However, the development of optimal assays depends on a range of factors related to the instrument, consumables, and the sample itself. Despite this, comprehensive investigations into how these parameters influence the quality of the resulting phase images remain limited.</p><p><strong>Aim: </strong>To address this problem, we systematically explore the effect of these factors, including the microfluidic chamber height and its material properties, the density of the suspension, and other sample-inherent properties, on the signal-to-noise ratio (SNR) of the reconstructed phase image.</p><p><strong>Approach: </strong>We constructed an off-axis digital holographic microscope and defined a robust numerical processing pipeline allowing for the numerical reconstruction, refocusing and counting of suspended particles in a measurement volume spanning roughly <math><mrow><mn>120</mn> <mo>×</mo> <mn>120</mn> <mo>×</mo> <mn>400</mn> <mtext>  </mtext> <mi>μ</mi> <msup><mrow><mi>m</mi></mrow> <mrow><mn>3</mn></mrow> </msup> </mrow> </math> , at 50× magnification. We analyzed the performance of this system using various dilution steps of silica microspheres, Gram-positive spherical <i>Staphylococcus warneri</i> and Gram-negative rod-shaped <i>Escherichia coli</i> bacteria, filled in commercial microfluidic chips with different chamber heights.</p><p><strong>Results: </strong>Experimental results demonstrated the system's capability in reflecting the dilution steps over 2 to 3 orders of magnitude. Our SNR analysis highlighted the microfluidic chamber height and the density of the suspension as key contributors to the background noise, whereas the particles themselves seemed to have a negligible effect. From this insight, we were able to derive an analytical function to predict the SNR of a given DHM system for various concentrations, chamber heights, and particle types.</p><p><strong>Conclusions: </strong>We successfully built a DHM system for counting suspended particles over a wide concentration range and for various microfluidic chamber heights. We also derived an initial framework for predicting and optimizing the performance of a given DHM system.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"30 10","pages":"106501"},"PeriodicalIF":2.9000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12525663/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Optics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JBO.30.10.106501","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/10/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Significance: Digital holographic microscopy (DHM) has proven effective for particle segmentation within a given volume, making it well-suited for rapid monitoring of bacterial growth in microfluidic cartridges-such as in single-cell-based antimicrobial susceptibility testing assays. However, the development of optimal assays depends on a range of factors related to the instrument, consumables, and the sample itself. Despite this, comprehensive investigations into how these parameters influence the quality of the resulting phase images remain limited.

Aim: To address this problem, we systematically explore the effect of these factors, including the microfluidic chamber height and its material properties, the density of the suspension, and other sample-inherent properties, on the signal-to-noise ratio (SNR) of the reconstructed phase image.

Approach: We constructed an off-axis digital holographic microscope and defined a robust numerical processing pipeline allowing for the numerical reconstruction, refocusing and counting of suspended particles in a measurement volume spanning roughly 120 × 120 × 400    μ m 3 , at 50× magnification. We analyzed the performance of this system using various dilution steps of silica microspheres, Gram-positive spherical Staphylococcus warneri and Gram-negative rod-shaped Escherichia coli bacteria, filled in commercial microfluidic chips with different chamber heights.

Results: Experimental results demonstrated the system's capability in reflecting the dilution steps over 2 to 3 orders of magnitude. Our SNR analysis highlighted the microfluidic chamber height and the density of the suspension as key contributors to the background noise, whereas the particles themselves seemed to have a negligible effect. From this insight, we were able to derive an analytical function to predict the SNR of a given DHM system for various concentrations, chamber heights, and particle types.

Conclusions: We successfully built a DHM system for counting suspended particles over a wide concentration range and for various microfluidic chamber heights. We also derived an initial framework for predicting and optimizing the performance of a given DHM system.

微流控墨盒中用于快速细菌分割和计数的数字全息显微镜:诊断应用的基本考虑和限制。
意义:数字全息显微镜(DHM)已被证明对给定体积内的颗粒分割是有效的,使其非常适合于微流体墨盒中细菌生长的快速监测,例如在基于单细胞的抗菌素敏感性试验中。然而,最佳测定方法的开发取决于与仪器、耗材和样品本身相关的一系列因素。尽管如此,对这些参数如何影响所得相位图像质量的全面研究仍然有限。为了解决这一问题,我们系统地探讨了微流控室高度及其材料特性、悬浮液密度以及其他样品固有特性等因素对重构相位图像信噪比的影响。方法:我们构建了一个离轴数字全息显微镜,并定义了一个强大的数值处理管道,允许在大约120 × 120 × 400 μ m 3的测量体积中进行数值重建,重新聚焦和计数悬浮粒子,放大倍数为50倍。我们采用不同的稀释步骤,将二氧化硅微球、革兰氏阳性球形瓦纳利葡萄球菌和革兰氏阴性棒状大肠杆菌填充在不同腔高的商用微流控芯片中,分析了该系统的性能。结果:实验结果表明,该系统能够反映2至3个数量级的稀释步骤。我们的信噪比分析强调,微流控室的高度和悬浮液的密度是背景噪声的主要贡献者,而颗粒本身的影响似乎可以忽略不计。根据这一见解,我们能够推导出一个分析函数来预测给定DHM系统在不同浓度、腔室高度和颗粒类型下的信噪比。结论:我们成功地建立了一个DHM系统,可以在较宽的浓度范围和不同的微流控室高度下对悬浮颗粒进行计数。我们还推导了一个用于预测和优化给定DHM系统性能的初始框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.40
自引率
5.70%
发文量
263
审稿时长
2 months
期刊介绍: The Journal of Biomedical Optics publishes peer-reviewed papers on the use of modern optical technology for improved health care and biomedical research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信