Image based artificial intelligence-enhanced ECG prediction of incident atrial fibrillation.

IF 5.7 2区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
Boroumand Zeidaabadi, Konstantinos Patlatzoglou, Joseph Barker, Libor Pastika, Gul Rukh Khattak, Mehak Gurnani, Xavier Da Silva Anjos Machado, Nicholas S Peters, Daniel B Kramer, Jonathan W Waks, Fu Siong Ng, Arunashis Sau
{"title":"Image based artificial intelligence-enhanced ECG prediction of incident atrial fibrillation.","authors":"Boroumand Zeidaabadi, Konstantinos Patlatzoglou, Joseph Barker, Libor Pastika, Gul Rukh Khattak, Mehak Gurnani, Xavier Da Silva Anjos Machado, Nicholas S Peters, Daniel B Kramer, Jonathan W Waks, Fu Siong Ng, Arunashis Sau","doi":"10.1016/j.hrthm.2025.10.024","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Early prediction of atrial fibrillation (AF) is crucial for reducing adverse outcomes. While artificial intelligence-enhanced ECG (AI-ECG) analysis shows promise in predicting AF, most approaches require digital ECG signals, limiting their application in settings where ECGs are stored as images.</p><p><strong>Objective: </strong>We aimed to develop and validate an image-based AI-ECG approach for predicting incident AF across multiple datasets.</p><p><strong>Methods: </strong>We used 1,163,401 ECGs from 189,539 patients in the Beth Israel Deaconess Medical Center (BIDMC) dataset and 70,655 ECGs from 65,610 participants in the UK Biobank. The AI-ECG model was trained on ECG images processed to 310x868 pixels.</p><p><strong>Results: </strong>The model achieved C-statistics of 0.754 (95% CI: 0.747-0.761) in the BIDMC dataset and 0.723 (95% CI: 0.704-0.741) in the UK Biobank for predicting incident AF. Performance was maintained across key subgroups including outpatients, females, and non-White individuals. Compared to the CHARGE-AF risk score, the AI-ECG model showed superior performance (c-statistic 0.696 vs 0.667, p<0.05) and provided significant additive value when combined (c-statistic 0.711, p<0.0001). The model also performed well on smartphone-photographed ECGs (c-statistic 0.736). Saliency mapping indicated the model primarily focused on P-wave morphology and PR interval regions.</p><p><strong>Conclusion: </strong>This image-based approach enables AI-ECG prediction of AF in settings without digital ECG infrastructure and provides additive value to known clinical risk scores.</p>","PeriodicalId":12886,"journal":{"name":"Heart rhythm","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heart rhythm","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.hrthm.2025.10.024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Early prediction of atrial fibrillation (AF) is crucial for reducing adverse outcomes. While artificial intelligence-enhanced ECG (AI-ECG) analysis shows promise in predicting AF, most approaches require digital ECG signals, limiting their application in settings where ECGs are stored as images.

Objective: We aimed to develop and validate an image-based AI-ECG approach for predicting incident AF across multiple datasets.

Methods: We used 1,163,401 ECGs from 189,539 patients in the Beth Israel Deaconess Medical Center (BIDMC) dataset and 70,655 ECGs from 65,610 participants in the UK Biobank. The AI-ECG model was trained on ECG images processed to 310x868 pixels.

Results: The model achieved C-statistics of 0.754 (95% CI: 0.747-0.761) in the BIDMC dataset and 0.723 (95% CI: 0.704-0.741) in the UK Biobank for predicting incident AF. Performance was maintained across key subgroups including outpatients, females, and non-White individuals. Compared to the CHARGE-AF risk score, the AI-ECG model showed superior performance (c-statistic 0.696 vs 0.667, p<0.05) and provided significant additive value when combined (c-statistic 0.711, p<0.0001). The model also performed well on smartphone-photographed ECGs (c-statistic 0.736). Saliency mapping indicated the model primarily focused on P-wave morphology and PR interval regions.

Conclusion: This image-based approach enables AI-ECG prediction of AF in settings without digital ECG infrastructure and provides additive value to known clinical risk scores.

基于图像的人工智能增强心电预测心房颤动。
背景:房颤(AF)的早期预测对于减少不良后果至关重要。虽然人工智能增强的ECG (AI-ECG)分析在预测AF方面显示出前景,但大多数方法都需要数字ECG信号,这限制了它们在ECG作为图像存储的环境中的应用。目的:我们旨在开发和验证一种基于图像的AI-ECG方法,用于跨多个数据集预测事件AF。方法:我们使用贝斯以色列女执事医疗中心(BIDMC)数据集中189,539名患者的1,163,401张心电图和英国生物银行65,610名参与者的70,655张心电图。AI-ECG模型是在处理到310 × 868像素的心电图像上进行训练的。结果:该模型在BIDMC数据集中的c统计量为0.754 (95% CI: 0.747-0.761),在UK Biobank中预测AF事件的c统计量为0.723 (95% CI: 0.704-0.741)。在包括门诊患者、女性和非白人个体在内的关键亚组中,性能保持不变。与CHARGE-AF风险评分相比,AI-ECG模型表现出更好的性能(c统计量为0.696 vs 0.667, p)。结论:这种基于图像的方法可以在没有数字ECG基础设施的情况下预测AF,并为已知的临床风险评分提供附加价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Heart rhythm
Heart rhythm 医学-心血管系统
CiteScore
10.50
自引率
5.50%
发文量
1465
审稿时长
24 days
期刊介绍: HeartRhythm, the official Journal of the Heart Rhythm Society and the Cardiac Electrophysiology Society, is a unique journal for fundamental discovery and clinical applicability. HeartRhythm integrates the entire cardiac electrophysiology (EP) community from basic and clinical academic researchers, private practitioners, engineers, allied professionals, industry, and trainees, all of whom are vital and interdependent members of our EP community. The Heart Rhythm Society is the international leader in science, education, and advocacy for cardiac arrhythmia professionals and patients, and the primary information resource on heart rhythm disorders. Its mission is to improve the care of patients by promoting research, education, and optimal health care policies and standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信