Mycorrhizal Type and Soil Nitrogen Content Coregulate Foliar Nutrient Responses to Neighborhood Functional Dissimilarity in Subtropical Forests.

IF 6.3 1区 生物学 Q1 PLANT SCIENCES
Xue Zhao, Zhihong Xu, Fulin Chen, Tao Wang, Qingyong Lin, Zaipeng Yu, Zhichao Xia, Linfeng Li, Zhiqun Huang
{"title":"Mycorrhizal Type and Soil Nitrogen Content Coregulate Foliar Nutrient Responses to Neighborhood Functional Dissimilarity in Subtropical Forests.","authors":"Xue Zhao, Zhihong Xu, Fulin Chen, Tao Wang, Qingyong Lin, Zaipeng Yu, Zhichao Xia, Linfeng Li, Zhiqun Huang","doi":"10.1111/pce.70243","DOIUrl":null,"url":null,"abstract":"<p><p>Foliar nitrogen (N) and phosphorus (P) concentrations are of critical importance to plant productivity. Despite global declines in plant diversity, their effects on tree foliar N and P dynamics remain uncertain, especially under different mycorrhizal types and soil nutrient conditions. Based on a large biodiversity experiment in subtropical China, we assessed how neighborhood species richness and functional dissimilarity influence foliar N and P concentrations across 794 tree individuals, comprising three arbuscular mycorrhizal (AM) and five ectomycorrhizal (EcM) tree species, along natural soil total N gradients. At the neighborhood scale, foliar nutrients were jointly influenced by functional dissimilarity, mycorrhizal type, and soil N availability. Among dissimilarity metrics, wood density (WD) dissimilarity was the strongest predictor. Specifically, functional dissimilarity consistently increased foliar N and P concentrations in AM trees across the soil total N level, whereas its effects on EcM trees shifted from positive to negative with increasing soil total N content. These diversity-driven increases in foliar P concentration were further associated with enhanced tree growth. Our findings demonstrate that mycorrhizal type and soil N availability jointly mediate effects of neighborhood diversity on tree foliar nutrient status, with foliar P concentration playing a pivotal role in driving productivity responses to biodiversity in subtropical forests.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Cell & Environment","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/pce.70243","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Foliar nitrogen (N) and phosphorus (P) concentrations are of critical importance to plant productivity. Despite global declines in plant diversity, their effects on tree foliar N and P dynamics remain uncertain, especially under different mycorrhizal types and soil nutrient conditions. Based on a large biodiversity experiment in subtropical China, we assessed how neighborhood species richness and functional dissimilarity influence foliar N and P concentrations across 794 tree individuals, comprising three arbuscular mycorrhizal (AM) and five ectomycorrhizal (EcM) tree species, along natural soil total N gradients. At the neighborhood scale, foliar nutrients were jointly influenced by functional dissimilarity, mycorrhizal type, and soil N availability. Among dissimilarity metrics, wood density (WD) dissimilarity was the strongest predictor. Specifically, functional dissimilarity consistently increased foliar N and P concentrations in AM trees across the soil total N level, whereas its effects on EcM trees shifted from positive to negative with increasing soil total N content. These diversity-driven increases in foliar P concentration were further associated with enhanced tree growth. Our findings demonstrate that mycorrhizal type and soil N availability jointly mediate effects of neighborhood diversity on tree foliar nutrient status, with foliar P concentration playing a pivotal role in driving productivity responses to biodiversity in subtropical forests.

亚热带森林菌根类型和土壤含氮量共同调节叶片对邻域功能差异的养分响应。
叶片氮(N)和磷(P)浓度对植物生产力至关重要。尽管全球植物多样性下降,但它们对树木叶片N和P动态的影响仍不确定,特别是在不同菌根类型和土壤养分条件下。基于中国亚热带大型生物多样性实验,我们评估了794棵树(包括3种丛枝菌根(AM)和5种外生菌根(EcM)树种)的邻域物种丰富度和功能差异对叶片N和P浓度沿天然土壤全氮梯度的影响。在邻域尺度上,叶面养分受功能差异、菌根类型和土壤氮有效性的共同影响。在不同的指标中,木材密度(WD)差异是最强的预测因子。在全氮水平上,功能差异对AM树叶片N和P含量的影响持续增加,而对EcM树的影响则随土壤全氮含量的增加而由正向负转变。这些多样性驱动的叶面磷浓度的增加与树木生长的增强进一步相关。研究结果表明,菌根类型和土壤氮有效性共同调节群落多样性对树木叶片营养状况的影响,其中叶片磷浓度在亚热带森林生产力对生物多样性的响应中起关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant, Cell & Environment
Plant, Cell & Environment 生物-植物科学
CiteScore
13.30
自引率
4.10%
发文量
253
审稿时长
1.8 months
期刊介绍: Plant, Cell & Environment is a premier plant science journal, offering valuable insights into plant responses to their environment. Committed to publishing high-quality theoretical and experimental research, the journal covers a broad spectrum of factors, spanning from molecular to community levels. Researchers exploring various aspects of plant biology, physiology, and ecology contribute to the journal's comprehensive understanding of plant-environment interactions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信