Mariane St-Aubin, Jean-François Lapierre, Dominic E Ponton, Michel Sliger, Jeanne Gaudreault, Éric Atagotaaluk, Daniel Fortier, Marc Amyot
{"title":"A first run-of-river hydropower plant development in a permafrost-rich subarctic Canadian region: short-term fate of mercury and carbon.","authors":"Mariane St-Aubin, Jean-François Lapierre, Dominic E Ponton, Michel Sliger, Jeanne Gaudreault, Éric Atagotaaluk, Daniel Fortier, Marc Amyot","doi":"10.1039/d5em00171d","DOIUrl":null,"url":null,"abstract":"<p><p>A first run-of-river power plant built in Nunavik (QC, Canada) lies in a continuous permafrost zone, a substantial carbon (C) rich mercury (Hg) reservoir. Its impoundment could promote permafrost thaw and remobilize Hg and lead to the enhanced production of highly toxic methylmercury (MeHg). To elucidate how RORs can influence C and Hg dynamics and transformations in a subarctic landscape, soils, water and benthic invertebrates were sampled shortly before and after the flooding. Soil Hg concentrations were higher in the organic active layer than in frozen ground. Three months after river impoundment, MeHg concentrations and proportions in the surface organic layer of flooded soils were seven and four times higher, respectively. A similar increase was observed in surface waters of the newly created bay, where MeHg concentration and proportion were, respectively, ∼10 and four times higher. Biological MeHg concentrations increased in low trophic level organisms associated with this flooded environment, namely primary consumers (∼4×) and omnivores (∼3×). However, these rises were limited to the small (<1 km<sup>2</sup>) newly created bay, highlighting spatial heterogeneity in the production and trophic transfer of MeHg at the river scale in response to recent impoundment.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Processes & Impacts","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1039/d5em00171d","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A first run-of-river power plant built in Nunavik (QC, Canada) lies in a continuous permafrost zone, a substantial carbon (C) rich mercury (Hg) reservoir. Its impoundment could promote permafrost thaw and remobilize Hg and lead to the enhanced production of highly toxic methylmercury (MeHg). To elucidate how RORs can influence C and Hg dynamics and transformations in a subarctic landscape, soils, water and benthic invertebrates were sampled shortly before and after the flooding. Soil Hg concentrations were higher in the organic active layer than in frozen ground. Three months after river impoundment, MeHg concentrations and proportions in the surface organic layer of flooded soils were seven and four times higher, respectively. A similar increase was observed in surface waters of the newly created bay, where MeHg concentration and proportion were, respectively, ∼10 and four times higher. Biological MeHg concentrations increased in low trophic level organisms associated with this flooded environment, namely primary consumers (∼4×) and omnivores (∼3×). However, these rises were limited to the small (<1 km2) newly created bay, highlighting spatial heterogeneity in the production and trophic transfer of MeHg at the river scale in response to recent impoundment.
期刊介绍:
Environmental Science: Processes & Impacts publishes high quality papers in all areas of the environmental chemical sciences, including chemistry of the air, water, soil and sediment. We welcome studies on the environmental fate and effects of anthropogenic and naturally occurring contaminants, both chemical and microbiological, as well as related natural element cycling processes.