{"title":"First-principles investigation of LiSnAl and LiSiIn half-Heusler compounds for optoelectronic applications.","authors":"Mohshina Binte Mansur, Tasmi Akter, Istiak Ahmed Ovi, Jahirul Islam, Wahidur Rahman Sajal","doi":"10.1039/d5ra04779j","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents a comprehensive first-principles investigation into the structural, electrical, magnetic, mechanical, optical, and thermodynamic properties of two lithium-based half-Heusler semiconductors, LiSiIn and LiSnAl. Our findings confirm that both LiSiIn and LiSnAl possess a cubic C1b crystal structure (<i>F</i>4̄3<i>m</i> space group) and satisfy Born's stability criteria, confirming their mechanical stability. They exhibit indirect and narrow band gaps of 0.095 eV (LiSnAl) and 0.228 eV (LiSiIn) with GGA-PBE, and 0.517 eV (LiSnAl) and 0.591 eV (LiSiIn) with HSE06, indicating semiconducting behavior Charge density and Mulliken population analyses reveal a mixed ionic-covalent bonding, while negative Cauchy pressure indicate brittleness. LiSiIn demonstrates superior stiffness, deformation resistance, and fracture strength compared to LiSnAl. Optically, both compounds exhibit high dielectric constants, UV reflectivity (56-60%), and strong low-energy absorption, suggesting potential applications in capacitors, photovoltaics, and thermophotovoltaics. Phonon dispersion confirms dynamic stability, and thermodynamic results show low minimum thermal conductivities (∼0.006-0.007 W m<sup>-1</sup> K<sup>-1</sup>) and high melting points (1003.46 K for LiSnAl, 1100.02 K for LiSiIn). The higher melting point of LiSiIn reflects stronger bonding, while LiSnAl's lower thermal conductivity favors thermal energy storage. Overall, both materials demonstrate multifunctional potential for next-generation energy and optoelectronic devices.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":"15 46","pages":"38562-38576"},"PeriodicalIF":4.6000,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12525440/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5ra04779j","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/10/14 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents a comprehensive first-principles investigation into the structural, electrical, magnetic, mechanical, optical, and thermodynamic properties of two lithium-based half-Heusler semiconductors, LiSiIn and LiSnAl. Our findings confirm that both LiSiIn and LiSnAl possess a cubic C1b crystal structure (F4̄3m space group) and satisfy Born's stability criteria, confirming their mechanical stability. They exhibit indirect and narrow band gaps of 0.095 eV (LiSnAl) and 0.228 eV (LiSiIn) with GGA-PBE, and 0.517 eV (LiSnAl) and 0.591 eV (LiSiIn) with HSE06, indicating semiconducting behavior Charge density and Mulliken population analyses reveal a mixed ionic-covalent bonding, while negative Cauchy pressure indicate brittleness. LiSiIn demonstrates superior stiffness, deformation resistance, and fracture strength compared to LiSnAl. Optically, both compounds exhibit high dielectric constants, UV reflectivity (56-60%), and strong low-energy absorption, suggesting potential applications in capacitors, photovoltaics, and thermophotovoltaics. Phonon dispersion confirms dynamic stability, and thermodynamic results show low minimum thermal conductivities (∼0.006-0.007 W m-1 K-1) and high melting points (1003.46 K for LiSnAl, 1100.02 K for LiSiIn). The higher melting point of LiSiIn reflects stronger bonding, while LiSnAl's lower thermal conductivity favors thermal energy storage. Overall, both materials demonstrate multifunctional potential for next-generation energy and optoelectronic devices.
本研究对两种锂基半赫斯勒半导体LiSiIn和LiSnAl的结构、电学、磁学、机械、光学和热力学性质进行了全面的第一性原理研究。我们的发现证实了LiSiIn和LiSnAl都具有立方C1b晶体结构(F4′3m空间群),并且满足Born的稳定性标准,证实了它们的力学稳定性。GGA-PBE的带隙为0.095 eV (LiSnAl)和0.228 eV (LiSiIn), HSE06的带隙为0.517 eV (LiSnAl)和0.591 eV (LiSiIn),表明它们具有半导体性质。电荷密度和Mulliken居群分析表明它们具有混合离子共价键,而负柯西压表明它们具有脆性。与LiSnAl相比,LiSiIn具有优越的刚度、抗变形能力和断裂强度。在光学上,这两种化合物都具有高介电常数,UV反射率(56-60%)和强的低能量吸收,这表明它们在电容器,光伏和热光伏方面具有潜在的应用前景。声子色散证实了该材料的动态稳定性,热力学结果显示其最低导热系数低(~ 0.006-0.007 W m-1 K-1),熔点高(LiSnAl为1003.46 K, LiSiIn为1100.02 K)。LiSnAl的熔点越高,键合越强,而LiSnAl的导热系数越低,有利于热能的储存。总的来说,这两种材料都展示了下一代能源和光电子器件的多功能潜力。
期刊介绍:
An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.