Naringenin-Loaded Core-Shell Mg-MOF Nanocomposite Integrated Injectable Hydrogel for Bone Regeneration: Anti-inflammatory, Osteogenic, and Angiogenic.

IF 5.4 2区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Chaonan He, Peipei Feng, Dingli Xu, Leidong Lian, Jin Li, Kaifeng Gan, Yi Gu, Tingting Pan, Yun Tang, Xiang Wu, Zhaoxiang Peng, Chunhai Ke, Jingyun Ma
{"title":"Naringenin-Loaded Core-Shell Mg-MOF Nanocomposite Integrated Injectable Hydrogel for Bone Regeneration: Anti-inflammatory, Osteogenic, and Angiogenic.","authors":"Chaonan He, Peipei Feng, Dingli Xu, Leidong Lian, Jin Li, Kaifeng Gan, Yi Gu, Tingting Pan, Yun Tang, Xiang Wu, Zhaoxiang Peng, Chunhai Ke, Jingyun Ma","doi":"10.1021/acs.biomac.5c01230","DOIUrl":null,"url":null,"abstract":"<p><p>Composite biomaterial systems facilitate regenerative medicine through component synergy. Herein, novel core-shell nanocomposites (N-HMMs) are prepared, with hollow mesoporous silica (HMSNs) as the core and magnesium-gallic acid metal-organic frameworks (Mg-MOFs) as the shell. N-HMMs are loaded with the small-molecule osteoinductive drug naringin (Nar) to form N-HMMs@Nar, which is integrated into methacrylate gelatin/polyethylene glycol diacrylate hydrogels (GelMA/PEGDA, GP) to construct N-HMMs@Nar@GP. N-HMMs@Nar@GP enables sustained release of Nar, bioactive Mg<sup>2+</sup>, and antioxidant gallic acid for synergistic anti-inflammation, osteogenesis, and angiogenesis of bone regeneration. GP adapts N-HMMs@Nar to the traumatic characteristics of bone defects and facilitates <i>in situ</i> treatments. <i>In vitro</i> studies have confirmed the composite materials' biocompatibility, osteoinductive differentiation, and angiogenesis capabilities. The ability of N-HMMs@Nar@GP to enhance osteogenesis and angiogenesis is demonstrated in an <i>in vivo</i> tibial defect model using micro-CT and histopathological analysis. Therefore, N-HMMs@Nar@GP holds significant potential for application in the repair of bone defects.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.5c01230","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Composite biomaterial systems facilitate regenerative medicine through component synergy. Herein, novel core-shell nanocomposites (N-HMMs) are prepared, with hollow mesoporous silica (HMSNs) as the core and magnesium-gallic acid metal-organic frameworks (Mg-MOFs) as the shell. N-HMMs are loaded with the small-molecule osteoinductive drug naringin (Nar) to form N-HMMs@Nar, which is integrated into methacrylate gelatin/polyethylene glycol diacrylate hydrogels (GelMA/PEGDA, GP) to construct N-HMMs@Nar@GP. N-HMMs@Nar@GP enables sustained release of Nar, bioactive Mg2+, and antioxidant gallic acid for synergistic anti-inflammation, osteogenesis, and angiogenesis of bone regeneration. GP adapts N-HMMs@Nar to the traumatic characteristics of bone defects and facilitates in situ treatments. In vitro studies have confirmed the composite materials' biocompatibility, osteoinductive differentiation, and angiogenesis capabilities. The ability of N-HMMs@Nar@GP to enhance osteogenesis and angiogenesis is demonstrated in an in vivo tibial defect model using micro-CT and histopathological analysis. Therefore, N-HMMs@Nar@GP holds significant potential for application in the repair of bone defects.

负载柚皮素核-壳Mg-MOF纳米复合材料集成可注射水凝胶用于骨再生:抗炎、成骨和血管生成。
复合生物材料系统通过组分协同作用促进再生医学。本文制备了以中空介孔二氧化硅(HMSNs)为核心,镁-没食子酸金属有机骨架(Mg-MOFs)为壳层的新型核-壳纳米复合材料(N-HMMs)。n - hmm装载小分子骨诱导药物柚皮苷(Nar)形成N-HMMs@Nar,将其整合到甲基丙烯酸酯明胶/聚乙二醇二丙烯酸酯水凝胶(GelMA/PEGDA, GP)中构建N-HMMs@Nar@GP。N-HMMs@Nar@GP能够持续释放Nar、生物活性Mg2+和抗氧化剂没食子酸,协同抗炎、成骨和骨再生血管生成。GP适应N-HMMs@Nar骨缺损的创伤性特点,便于原位治疗。体外研究证实了复合材料的生物相容性、骨诱导分化和血管生成能力。通过显微ct和组织病理学分析,在体内胫骨缺损模型中证明了N-HMMs@Nar@GP促进骨生成和血管生成的能力。因此,N-HMMs@Nar@GP在骨缺损修复中具有重要的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomacromolecules
Biomacromolecules 化学-高分子科学
CiteScore
10.60
自引率
4.80%
发文量
417
审稿时长
1.6 months
期刊介绍: Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine. Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信