Ditetrel Bonding from Reactive Strained Propellane and Cyclic Carbocation as an Electron Donor/Acceptor.

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL
Linhao Yang, Xin Yang, Shili Deng, Liyuan Sun, Yi Zeng
{"title":"Ditetrel Bonding from Reactive Strained Propellane and Cyclic Carbocation as an Electron Donor/Acceptor.","authors":"Linhao Yang, Xin Yang, Shili Deng, Liyuan Sun, Yi Zeng","doi":"10.1021/acs.jpca.5c06054","DOIUrl":null,"url":null,"abstract":"<p><p>The binary ditetrel bond (DTB) complexes between separate strained [1.1.1]propellane (Lewis base) and five- or six-membered cyclic carbocations containing chalcogen oxygen and/or sulfur atom (Lewis acid) were first theoretically investigated at the B3LYP(D3)/def2-TZVP level. All of the binary complexes offer substantial thermodynamic advantages with binding energies (<i>E</i><sub>b</sub>) of more or less -10 kcal mol<sup>-1</sup>. The five-membered carbocation complexes are more stable, with -<i>E</i><sub>b</sub> values larger by 2-4 kcal mol<sup>-1</sup> than those of the six-membered ones. A comparison between the ternary and the more saturated complexes shows that the saturation of the cyclic carbocation species favors complexation. The ultralong bridgehead C1-C2 bond also influences the DTB interaction; the binary systems, wherein the wing -CH<sub>2</sub> group of [1.1.1]propellane is substituted by SiH<sub>2</sub> with a C1-C2 bond of 2.0 Å, serving as a Lewis base, are predicted to have -<i>E</i><sub>b</sub> values more than ∼1-3 kcal mol<sup>-1</sup> compared with those of their corresponding [1.1.1]propellane dyads and triads. The energy decomposition analysis (sobEDA), together with the extended transition state combined with natural orbitals for chemical valence (ETS-NOCV), offers in-depth insights into the nature of the interaction. The independent gradient model based on the Hirshfeld partition (IGMH) and the quantum theory of atoms in the molecule (AIM) analyses visualize the existence of substantial DTB interactions.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.5c06054","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The binary ditetrel bond (DTB) complexes between separate strained [1.1.1]propellane (Lewis base) and five- or six-membered cyclic carbocations containing chalcogen oxygen and/or sulfur atom (Lewis acid) were first theoretically investigated at the B3LYP(D3)/def2-TZVP level. All of the binary complexes offer substantial thermodynamic advantages with binding energies (Eb) of more or less -10 kcal mol-1. The five-membered carbocation complexes are more stable, with -Eb values larger by 2-4 kcal mol-1 than those of the six-membered ones. A comparison between the ternary and the more saturated complexes shows that the saturation of the cyclic carbocation species favors complexation. The ultralong bridgehead C1-C2 bond also influences the DTB interaction; the binary systems, wherein the wing -CH2 group of [1.1.1]propellane is substituted by SiH2 with a C1-C2 bond of 2.0 Å, serving as a Lewis base, are predicted to have -Eb values more than ∼1-3 kcal mol-1 compared with those of their corresponding [1.1.1]propellane dyads and triads. The energy decomposition analysis (sobEDA), together with the extended transition state combined with natural orbitals for chemical valence (ETS-NOCV), offers in-depth insights into the nature of the interaction. The independent gradient model based on the Hirshfeld partition (IGMH) and the quantum theory of atoms in the molecule (AIM) analyses visualize the existence of substantial DTB interactions.

反应应变丙烷与环碳正离子成键的电子给体/受体。
在B3LYP(D3)/def2-TZVP水平上,首次从理论上研究了分离的应变[1.1.1]推进剂(路易斯碱)与含氯、氧和/或硫原子(路易斯酸)的五元或六元环碳阳离子之间的二元双萜键(DTB)配合物。所有的二元配合物都具有可观的热力学优势,结合能(Eb)在-10千卡摩尔-1左右。五元碳正离子配合物更稳定,其-Eb值比六元碳正离子配合物大2 ~ 4 kcal mol-1。对三元配合物和更饱和的配合物的比较表明,环碳正离子的饱和有利于络合。超长桥头堡C1-C2键也影响DTB相互作用;在二元体系中,[1.1.1]推进剂的翼-CH2基团被SiH2取代,其C1-C2键为2.0 Å,作为路易斯碱,与相应的[1.1.1]推进剂二元和三元相比,预测其-Eb值大于~ 1-3千卡摩尔-1。能量分解分析(sobEDA)和扩展过渡态结合化学价轨道(ETS-NOCV)提供了对相互作用性质的深入了解。基于Hirshfeld划分(IGMH)和分子中原子量子理论(AIM)分析的独立梯度模型可视化了大量DTB相互作用的存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry A
The Journal of Physical Chemistry A 化学-物理:原子、分子和化学物理
CiteScore
5.20
自引率
10.30%
发文量
922
审稿时长
1.3 months
期刊介绍: The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信