Synergistic hydrolysis, coordination and hydrogen bond interactions in NIPS for underwater superoleophobic mesh-based oil/water separation.

IF 4.6 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
RSC Advances Pub Date : 2025-10-15 eCollection Date: 2025-10-14 DOI:10.1039/d5ra06305a
Yuxiang Liu, Yuchen Li, Congying He, Xin Yue, Shiming Hu, Hongyi Wang, Niaz Ali Khan, Chao Yang, Mengying Long
{"title":"Synergistic hydrolysis, coordination and hydrogen bond interactions in NIPS for underwater superoleophobic mesh-based oil/water separation.","authors":"Yuxiang Liu, Yuchen Li, Congying He, Xin Yue, Shiming Hu, Hongyi Wang, Niaz Ali Khan, Chao Yang, Mengying Long","doi":"10.1039/d5ra06305a","DOIUrl":null,"url":null,"abstract":"<p><p>Constructing a durable, high-flux, and fouling-resistant coating on metal meshes without compromising their structural integrity remains a formidable challenge. Herein, we report a novel non-solvent induced phase separation (NIPS) strategy that enables the synchronous occurrence of antimony trichloride hydrolysis, metal-polyphenol coordination, and PVP-TA hydrogen bonding during membrane formation, realizing collaborative interface engineering of membrane formation and functionalization in a single step. The synergistic effect leads to the <i>in situ</i> growth of a robust superhydrophilic network on the metal mesh without destroying the substrate. The resulting membrane achieves a high flux (8000 L m<sup>-2</sup> h<sup>-1</sup>) under gravity, along with excellent underwater self-cleaning ability and chemical stability. This work provides an efficient, time-saving, and economical method to prepare high flux and underwater self-cleaning wire mesh oil-water separation membranes.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":"15 46","pages":"38603-38611"},"PeriodicalIF":4.6000,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12522111/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5ra06305a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/10/14 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Constructing a durable, high-flux, and fouling-resistant coating on metal meshes without compromising their structural integrity remains a formidable challenge. Herein, we report a novel non-solvent induced phase separation (NIPS) strategy that enables the synchronous occurrence of antimony trichloride hydrolysis, metal-polyphenol coordination, and PVP-TA hydrogen bonding during membrane formation, realizing collaborative interface engineering of membrane formation and functionalization in a single step. The synergistic effect leads to the in situ growth of a robust superhydrophilic network on the metal mesh without destroying the substrate. The resulting membrane achieves a high flux (8000 L m-2 h-1) under gravity, along with excellent underwater self-cleaning ability and chemical stability. This work provides an efficient, time-saving, and economical method to prepare high flux and underwater self-cleaning wire mesh oil-water separation membranes.

水下超疏油网基油水分离NIPS的协同水解、配位和氢键相互作用。
在不影响金属网结构完整性的情况下,在金属网上构建耐用、高通量、耐污的涂层仍然是一项艰巨的挑战。在此,我们报道了一种新的非溶剂诱导相分离(NIPS)策略,该策略可以在膜形成过程中同步发生三氯化锑水解、金属-多酚配位和PVP-TA氢键,从而在一步中实现膜形成和功能化的协同界面工程。这种协同效应导致在不破坏基体的情况下,在金属网上原位生长出强大的超亲水性网络。所得膜在重力作用下达到高通量(8000 L m-2 h-1),同时具有优异的水下自清洁能力和化学稳定性。本工作为制备高通量水下自清洁钢丝网油水分离膜提供了一种高效、省时、经济的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
RSC Advances
RSC Advances chemical sciences-
CiteScore
7.50
自引率
2.60%
发文量
3116
审稿时长
1.6 months
期刊介绍: An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信