Yingkai Sha, John S. Schreck, William Chapman, David John Gagne II
{"title":"Investigating the Use of Terrain-Following Coordinates in AI-Driven Precipitation Forecasts","authors":"Yingkai Sha, John S. Schreck, William Chapman, David John Gagne II","doi":"10.1029/2025GL118478","DOIUrl":null,"url":null,"abstract":"<p>Artificial Intelligence (AI) weather prediction (AIWP) models often produce “blurry” precipitation forecasts. This study presents a novel solution to tackle this problem—integrating terrain-following coordinates into AIWP models. Forecast experiments are conducted to evaluate the effectiveness of terrain-following coordinates using FuXi, an example AIWP model, adapted to 1.0<span></span><math>\n <semantics>\n <mrow>\n <mo>°</mo>\n </mrow>\n <annotation> ${}^{\\circ}$</annotation>\n </semantics></math> grid spacing data. Verification results show a largely improved estimation of extreme events and precipitation intensity spectra. Terrain-following coordinates are also found to collaborate well with global mass and energy conservation constraints, with a clear reduction of drizzle bias. Case studies reveal that terrain-following coordinates can represent near-surface winds better, which helps AIWP models in learning the relationships between precipitation and other prognostic variables. The result of this study suggests that terrain-following coordinates are worth considering for AIWP models in producing more accurate precipitation forecasts.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"52 20","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2025GL118478","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025GL118478","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Artificial Intelligence (AI) weather prediction (AIWP) models often produce “blurry” precipitation forecasts. This study presents a novel solution to tackle this problem—integrating terrain-following coordinates into AIWP models. Forecast experiments are conducted to evaluate the effectiveness of terrain-following coordinates using FuXi, an example AIWP model, adapted to 1.0 grid spacing data. Verification results show a largely improved estimation of extreme events and precipitation intensity spectra. Terrain-following coordinates are also found to collaborate well with global mass and energy conservation constraints, with a clear reduction of drizzle bias. Case studies reveal that terrain-following coordinates can represent near-surface winds better, which helps AIWP models in learning the relationships between precipitation and other prognostic variables. The result of this study suggests that terrain-following coordinates are worth considering for AIWP models in producing more accurate precipitation forecasts.
期刊介绍:
Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.