Haifeng Yu,Zhihua Ren,Zhihong Wang,Hui Sun,Ling Chen,Hao Jiang,Chunzhong Li
{"title":"Trace-Cobalt Surface Engineering of Ni-Rich Co-Free Cathodes Unlocks High-Power Density and Long-Cycle Life in Pouch-Type Li-Ion Batteries.","authors":"Haifeng Yu,Zhihua Ren,Zhihong Wang,Hui Sun,Ling Chen,Hao Jiang,Chunzhong Li","doi":"10.1021/acsnano.5c12594","DOIUrl":null,"url":null,"abstract":"Layered Ni-rich Co-free cathodes offer compelling advantages in energy density and cost-effectiveness, but their practical deployment is significantly hindered by structural instability and sluggish charge transfer kinetics. Herein, we report a spinel Li1-xCoO2 surface-engineered LiNi0.92Mn0.05Al0.03O2 (Co-NMA) cathode with only ∼2000 ppm Co, in which the efficient utilization of trace Co dramatically enhances both structural integrity and interfacial reaction kinetics. Comprehensive in/ex situ spectrochemical analyses reveal that surface engineering effectively suppresses parasitic interface reactions with negligible O2/CO2 emission in the first charge process. Concurrently, spinel Li1-xCoO2 facilitates faster Li+ diffusion and electron transfer, resulting in lower electrochemical polarization and higher phase-transition reversibility. Consequently, the Co-NMA delivers a high reversible capacity of 225.3 mAh g-1 at 0.1C and an initial Coulombic efficiency of 93.4%. It retains 62.1% of its capacity retention even at 10C, greatly outperforming the corresponding quaternary NMCA (54.2%) and NMA (49.1%). In pouch-type full cells, the Co-NMA sustains an extended cycle life over 650 cycles with 80% capacity retention, far surpassing NMCA (<320 cycles) and the reported NMA-based cathodes.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"1 1","pages":""},"PeriodicalIF":16.0000,"publicationDate":"2025-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c12594","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Layered Ni-rich Co-free cathodes offer compelling advantages in energy density and cost-effectiveness, but their practical deployment is significantly hindered by structural instability and sluggish charge transfer kinetics. Herein, we report a spinel Li1-xCoO2 surface-engineered LiNi0.92Mn0.05Al0.03O2 (Co-NMA) cathode with only ∼2000 ppm Co, in which the efficient utilization of trace Co dramatically enhances both structural integrity and interfacial reaction kinetics. Comprehensive in/ex situ spectrochemical analyses reveal that surface engineering effectively suppresses parasitic interface reactions with negligible O2/CO2 emission in the first charge process. Concurrently, spinel Li1-xCoO2 facilitates faster Li+ diffusion and electron transfer, resulting in lower electrochemical polarization and higher phase-transition reversibility. Consequently, the Co-NMA delivers a high reversible capacity of 225.3 mAh g-1 at 0.1C and an initial Coulombic efficiency of 93.4%. It retains 62.1% of its capacity retention even at 10C, greatly outperforming the corresponding quaternary NMCA (54.2%) and NMA (49.1%). In pouch-type full cells, the Co-NMA sustains an extended cycle life over 650 cycles with 80% capacity retention, far surpassing NMCA (<320 cycles) and the reported NMA-based cathodes.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.