Manipulating the metal-insulator transitions in correlated vanadium dioxide through bandwidth and band-filling control

IF 6.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Xiaohui Yao, Jiahui Ji, Xuanchi Zhou
{"title":"Manipulating the metal-insulator transitions in correlated vanadium dioxide through bandwidth and band-filling control","authors":"Xiaohui Yao, Jiahui Ji, Xuanchi Zhou","doi":"10.1016/j.jallcom.2025.184458","DOIUrl":null,"url":null,"abstract":"The metal-insulator transition (MIT) in correlated oxide systems opens up a new paradigm to trigger the abruption in multiple physical functionalities, enabling the possibility in unlocking exotic quantum states beyond conventional phase diagram. Nevertheless, the critical challenge for practical device implementation lies in achieving the precise control over the MIT behavior of correlated system across a broad temperature range, ensuring the operational adaptability in diverse environments. Herein, correlated vanadium dioxide (VO<sub>2</sub>) serves as a model system to demonstrate effective modulations on the MIT functionality through bandwidth and band-filling control. Leveraging the lattice mismatching between RuO<sub>2</sub> buffer layer and TiO<sub>2</sub> substrate, the <em>in-plane</em> tensile strain states in VO<sub>2</sub> films can be continuously adjusted by simply altering the thickness of buffer layer, leading to a tunable MIT property over a wide range exceeding 20 K. Beyond that, proton evolution is unveiled to drive the structural transformation of VO<sub>2</sub>, with a pronounced strain dependence, which is accompanied by hydrogenation-triggered collective carrier delocalization through hydrogen-related band filling in <em>t</em><sub>2 g</sub> band. The present work establishes an enticing platform for tailoring the MIT properties in correlated electron systems, paving the way for the rational design in exotic electronic phases and physical phenomena.","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"33 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jallcom.2025.184458","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The metal-insulator transition (MIT) in correlated oxide systems opens up a new paradigm to trigger the abruption in multiple physical functionalities, enabling the possibility in unlocking exotic quantum states beyond conventional phase diagram. Nevertheless, the critical challenge for practical device implementation lies in achieving the precise control over the MIT behavior of correlated system across a broad temperature range, ensuring the operational adaptability in diverse environments. Herein, correlated vanadium dioxide (VO2) serves as a model system to demonstrate effective modulations on the MIT functionality through bandwidth and band-filling control. Leveraging the lattice mismatching between RuO2 buffer layer and TiO2 substrate, the in-plane tensile strain states in VO2 films can be continuously adjusted by simply altering the thickness of buffer layer, leading to a tunable MIT property over a wide range exceeding 20 K. Beyond that, proton evolution is unveiled to drive the structural transformation of VO2, with a pronounced strain dependence, which is accompanied by hydrogenation-triggered collective carrier delocalization through hydrogen-related band filling in t2 g band. The present work establishes an enticing platform for tailoring the MIT properties in correlated electron systems, paving the way for the rational design in exotic electronic phases and physical phenomena.
通过带宽和带填充控制操纵相关二氧化钒的金属绝缘体跃迁
相关氧化物系统中的金属-绝缘体跃迁(MIT)为触发多种物理功能的断裂开辟了一个新的范例,使解锁超出常规相图的奇异量子态成为可能。然而,实际设备实施的关键挑战在于实现对相关系统在宽温度范围内的MIT行为的精确控制,确保在不同环境下的操作适应性。本文中,相关二氧化钒(VO2)作为模型系统,通过带宽和带填充控制来演示MIT功能的有效调制。利用RuO2缓冲层和TiO2衬底之间的晶格不匹配,可以通过简单地改变缓冲层的厚度来连续调整VO2薄膜的平面内拉伸应变状态,从而在超过20 K的大范围内可调谐MIT特性。除此之外,揭示了质子演化驱动VO2的结构转变,具有明显的应变依赖性,伴随着氢化引发的集体载流子离域,通过t2 g带的氢相关能带填充。本研究为相关电子系统的MIT特性定制提供了一个诱人的平台,为奇异电子相和物理现象的合理设计铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Alloys and Compounds
Journal of Alloys and Compounds 工程技术-材料科学:综合
CiteScore
11.10
自引率
14.50%
发文量
5146
审稿时长
67 days
期刊介绍: The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信