Proton-Electron Dual-Transfer-Channel Nanoreactors for Proton-Coupled Electron Transfer (PCET) in Photocatalytic Polyester Dehydrogenation-Reductive Amination

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yi-Wen Han, Run-Yu Liu, Yu-Xin Zhang, Lei Ye, Phuc T.T. Nguyen, Tian-Jun Gong, Xue-Bin Lu, Ning Yan, Yao Fu
{"title":"Proton-Electron Dual-Transfer-Channel Nanoreactors for Proton-Coupled Electron Transfer (PCET) in Photocatalytic Polyester Dehydrogenation-Reductive Amination","authors":"Yi-Wen Han, Run-Yu Liu, Yu-Xin Zhang, Lei Ye, Phuc T.T. Nguyen, Tian-Jun Gong, Xue-Bin Lu, Ning Yan, Yao Fu","doi":"10.1002/adfm.202521148","DOIUrl":null,"url":null,"abstract":"The photocatalytic polyester-to-amino acid transformation is significant for waste upcycling, yet challenging owing to the intricate multiple proton and electron transfer processes required. Herein, a general strategy for synthesizing hollow core-shell Sv-chalcogenide/Ti<sub>3</sub>C<sub>2</sub> nanoreactors (Sv = sulfur vacancies, chalcogenide = CdS/ZnIn<sub>2</sub>S<sub>4</sub>/CdIn<sub>2</sub>S<sub>4</sub>) is developed via templated epitaxial growth and defect-mediated interfacial bond construction, which act as the strong proton/electron extractor and relay station for tandem proton-coupled electron transfer (PCET) in photocatalytic polyester-to-amino acid dehydrogenation-reductive amination. These nanoreactors integrate spatially segregated proton-electron dual-transfer channels, where the interfacial asymmetrical charge distribution-induced built-in electric field (BIEF) drives directional electron transfer (ET) from chalcogenide to Ti<sub>3</sub>C<sub>2</sub>, while the electron-rich interfacial lattice oxygen mediates substrate deprotonation process via nucleophilic abstraction, delivering protons to Ti<sub>3</sub>C<sub>2</sub> and forming Ti<sub>3</sub>C<sub>2</sub>(OH)⁺ intermediates to trigger proton transfer (PT). By virtue of dynamically optimized molecular catalytic behavior accomplished through precise regulation of pivotal intermediate adsorption and activation energetics, the representative Sv-CdS/Ti<sub>3</sub>C<sub>2</sub> hollow nanoreactor (HNR) exhibits remarkable performance (10 mmol·g<sup>−1</sup>·h<sup>−1</sup> and 91% selectivity, alanine) and broad applicability for polyester-derived hydroxy acid-to-amino acid transformation. This study establishes a pioneering paradigm for the design of proton-electron dual-transfer-channel photocatalysts and provides novel perspectives for the effective regulation of complex reaction pathways.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"132 1","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202521148","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The photocatalytic polyester-to-amino acid transformation is significant for waste upcycling, yet challenging owing to the intricate multiple proton and electron transfer processes required. Herein, a general strategy for synthesizing hollow core-shell Sv-chalcogenide/Ti3C2 nanoreactors (Sv = sulfur vacancies, chalcogenide = CdS/ZnIn2S4/CdIn2S4) is developed via templated epitaxial growth and defect-mediated interfacial bond construction, which act as the strong proton/electron extractor and relay station for tandem proton-coupled electron transfer (PCET) in photocatalytic polyester-to-amino acid dehydrogenation-reductive amination. These nanoreactors integrate spatially segregated proton-electron dual-transfer channels, where the interfacial asymmetrical charge distribution-induced built-in electric field (BIEF) drives directional electron transfer (ET) from chalcogenide to Ti3C2, while the electron-rich interfacial lattice oxygen mediates substrate deprotonation process via nucleophilic abstraction, delivering protons to Ti3C2 and forming Ti3C2(OH)⁺ intermediates to trigger proton transfer (PT). By virtue of dynamically optimized molecular catalytic behavior accomplished through precise regulation of pivotal intermediate adsorption and activation energetics, the representative Sv-CdS/Ti3C2 hollow nanoreactor (HNR) exhibits remarkable performance (10 mmol·g−1·h−1 and 91% selectivity, alanine) and broad applicability for polyester-derived hydroxy acid-to-amino acid transformation. This study establishes a pioneering paradigm for the design of proton-electron dual-transfer-channel photocatalysts and provides novel perspectives for the effective regulation of complex reaction pathways.

Abstract Image

质子-电子双转移通道纳米反应器用于光催化聚酯脱氢-还原胺化反应
光催化聚酯到氨基酸的转化对废物升级回收具有重要意义,但由于需要复杂的多个质子和电子转移过程,因此具有挑战性。本文通过模板外延生长和缺陷介导的界面键构建,建立了一种中空核壳Sv-硫族化物/Ti3C2纳米反应器(Sv =硫空位,chalcogenide = CdS/ZnIn2S4/CdIn2S4)的合成策略,该反应器作为光催化聚合物-氨基酸脱氢-还原胺化反应中串联质子耦合电子转移(PCET)的强质子/电子萃取器和中继站。这些纳米反应器集成了空间分离的质子-电子双转移通道,其中界面不对称电荷分布诱导的内置电场(BIEF)驱动从硫系化合物到Ti3C2的定向电子转移(ET),而富电子的界面晶格氧通过亲核抽象介导底物去质子化过程,将质子传递到Ti3C2并形成Ti3C2(OH) +中间体触发质子转移(PT)。具有代表性的Sv-CdS/Ti3C2空心纳米反应器(HNR)通过对关键中间体吸附和活化能量的精确调控,实现了分子催化行为的动态优化,表现出10 mmol·g−1·h−1和91%的丙氨酸选择性,具有良好的性能和广泛的适用性。本研究为质子-电子双转移通道光催化剂的设计建立了一个开创性的范例,并为复杂反应途径的有效调控提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信