Bing Tu,Baoliang He,Yan He,Tao Zhou,Bo Liu,Jun Li,Antonio Plaza
{"title":"Self-Supervised Masked Graph Autoencoder for Hyperspectral Anomaly Detection.","authors":"Bing Tu,Baoliang He,Yan He,Tao Zhou,Bo Liu,Jun Li,Antonio Plaza","doi":"10.1109/tip.2025.3620091","DOIUrl":null,"url":null,"abstract":"Hyperspectral image anomaly detection faces the challenge of difficulty in annotating anomalous targets. Autoencoder (AE)-based methods are widely used due to their excellent image reconstruction capability. However, traditional grid-based image representation methods struggle to capture long-range dependencies and model non-Euclidean structures. To address these issues, this paper proposes a self-supervised Masked Graph AutoEncoder (MGAE) for hyperspectral anomaly detection. MGAE utilizes a Graph Attention Network (GAT) autoencoder to reconstruct the background of hyperspectral images and identifies anomalies by comparing the reconstructed features with the original features. Specifically, we constructs a topological graph structure of the hyperspectral image, which is then input into the GAT autoencoder for reconstruction, leveraging the multi-head attention mechanism to learn spatial and spectral features. To prevent the decoder from learning trivial solutions, we introduce a re-masking strategy that randomly masks both the input features and hidden representations during training, forcing the model to learn and reconstruct features under limited information, thereby improving detection performance. Additionally, the proposed loss function with graph Laplacian regularization (Twice Loss) minimizes variations in feature representations, leading to more consistent background reconstruction. Experimental results on several real-world hyperspectral datasets demonstrate that MGAE outperforms existing methods.","PeriodicalId":13217,"journal":{"name":"IEEE Transactions on Image Processing","volume":"101 1","pages":""},"PeriodicalIF":13.7000,"publicationDate":"2025-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Image Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/tip.2025.3620091","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Hyperspectral image anomaly detection faces the challenge of difficulty in annotating anomalous targets. Autoencoder (AE)-based methods are widely used due to their excellent image reconstruction capability. However, traditional grid-based image representation methods struggle to capture long-range dependencies and model non-Euclidean structures. To address these issues, this paper proposes a self-supervised Masked Graph AutoEncoder (MGAE) for hyperspectral anomaly detection. MGAE utilizes a Graph Attention Network (GAT) autoencoder to reconstruct the background of hyperspectral images and identifies anomalies by comparing the reconstructed features with the original features. Specifically, we constructs a topological graph structure of the hyperspectral image, which is then input into the GAT autoencoder for reconstruction, leveraging the multi-head attention mechanism to learn spatial and spectral features. To prevent the decoder from learning trivial solutions, we introduce a re-masking strategy that randomly masks both the input features and hidden representations during training, forcing the model to learn and reconstruct features under limited information, thereby improving detection performance. Additionally, the proposed loss function with graph Laplacian regularization (Twice Loss) minimizes variations in feature representations, leading to more consistent background reconstruction. Experimental results on several real-world hyperspectral datasets demonstrate that MGAE outperforms existing methods.
期刊介绍:
The IEEE Transactions on Image Processing delves into groundbreaking theories, algorithms, and structures concerning the generation, acquisition, manipulation, transmission, scrutiny, and presentation of images, video, and multidimensional signals across diverse applications. Topics span mathematical, statistical, and perceptual aspects, encompassing modeling, representation, formation, coding, filtering, enhancement, restoration, rendering, halftoning, search, and analysis of images, video, and multidimensional signals. Pertinent applications range from image and video communications to electronic imaging, biomedical imaging, image and video systems, and remote sensing.