Long-range optical coupling with epsilon-near-zero materials.

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Danqing Wang,Zheyu Lu,Sorren Warkander,Niharika Gupta,Qingjun Wang,Penghong Ci,Ruihan Guo,Jiachen Li,Ali Javey,Jie Yao,Feng Wang,Junqiao Wu
{"title":"Long-range optical coupling with epsilon-near-zero materials.","authors":"Danqing Wang,Zheyu Lu,Sorren Warkander,Niharika Gupta,Qingjun Wang,Penghong Ci,Ruihan Guo,Jiachen Li,Ali Javey,Jie Yao,Feng Wang,Junqiao Wu","doi":"10.1038/s41467-025-64504-w","DOIUrl":null,"url":null,"abstract":"Long-range resonant quantum tunneling of electrons happens across potential barriers when the wavefunction interferes constructively outside the barrier. Here we demonstrate an analogy in optical systems based on epsilon-near-zero materials, achieving phase-modulated, long-range optical interactions between transparent semiconducting oxide layers beyond the evanescent photonic coupling. Distinct from weak thin-film interference, intense electromagnetic fields confined within the epsilon-near-zero thin films show anti-correlated intensity oscillations as a function of interlayer separation up to hundreds of microns. The oscillatory, anti-correlated electromagnetic field intensities were probed by second harmonic generation from wedged indium tin oxide multilayers. Such a system that hosts subwavelength mode footprint and simultaneously long-range radiative coupling offers prospects for long-distance optical communication, large-scale photonic circuits, and hybrid quantum photonic systems.","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"125 1","pages":"9172"},"PeriodicalIF":15.7000,"publicationDate":"2025-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-64504-w","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Long-range resonant quantum tunneling of electrons happens across potential barriers when the wavefunction interferes constructively outside the barrier. Here we demonstrate an analogy in optical systems based on epsilon-near-zero materials, achieving phase-modulated, long-range optical interactions between transparent semiconducting oxide layers beyond the evanescent photonic coupling. Distinct from weak thin-film interference, intense electromagnetic fields confined within the epsilon-near-zero thin films show anti-correlated intensity oscillations as a function of interlayer separation up to hundreds of microns. The oscillatory, anti-correlated electromagnetic field intensities were probed by second harmonic generation from wedged indium tin oxide multilayers. Such a system that hosts subwavelength mode footprint and simultaneously long-range radiative coupling offers prospects for long-distance optical communication, large-scale photonic circuits, and hybrid quantum photonic systems.
与epsilon-近零材料的远程光学耦合。
当波函数在势垒外进行建设性干涉时,电子的远程共振量子隧穿就会发生。在这里,我们展示了基于epsilon近零材料的光学系统中的类比,实现了透明半导体氧化物层之间的相位调制,远程光学相互作用,超越了倏逝光子耦合。与微弱的薄膜干涉不同,限制在epsilon-近零薄膜内的强电磁场表现出反相关强度振荡,作为层间分离的函数,可达数百微米。利用楔形氧化铟锡多层膜产生的二次谐波来探测振荡的、反相关的电磁场强度。该系统具有亚波长模式足迹,同时具有远程辐射耦合,为远距离光通信、大规模光子电路和混合量子光子系统提供了前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信