Balanced Anion-Cation-EO Interaction Enables Ultrahigh Lithium-Ion Transport in 4.5 V-Class PEO-Based All-Solid-State Lithium Batteries.

IF 26.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zixiang Kong,Yingying Wu,Jian-Fang Wu,Xinmiao Liang,Yunsong Li,Yuxiao Lin,Jilei Liu
{"title":"Balanced Anion-Cation-EO Interaction Enables Ultrahigh Lithium-Ion Transport in 4.5 V-Class PEO-Based All-Solid-State Lithium Batteries.","authors":"Zixiang Kong,Yingying Wu,Jian-Fang Wu,Xinmiao Liang,Yunsong Li,Yuxiao Lin,Jilei Liu","doi":"10.1002/adma.202514236","DOIUrl":null,"url":null,"abstract":"The sluggish lithium-ion transport in high-concentration polyethylene oxide (hc-PEO) solid electrolytes (SEs) and across the electrode/hc-PEO SE interface causes failure of high-voltage PEO-based all-solid-state lithium batteries (ASSLBs). Here, bi-salt hc-PEO SEs with TFSI- and PO2F2 - are creatively fabricated, where PO2F2 - possesses higher Li+─PO2F2 - bonding energy, balancing anion-Li+-EO interactions by weakening Li+-EO interaction while strengthening Li+-anion interaction, and decomposes at electrode/SE interfaces, enabling facilitated lithium-ion transport in the SE and across interfaces. Li+ interactions in anion-Li+-EO aggregations are counterintuitively optimized when two anions reach an approximate molar ratio. Consequently, the ionic conductivity at 60 °C is enhanced by ≈20 times to 1.2 × 10-4 S cm-1, compared to hc-PEO SE with LiTFSI (5.8 × 10-6 S cm-1) or dominated LiPO2F2 (5.2 × 10-6 S cm-1). Using the bi-salt hc-PEO SE, Li//Li cells deliver an ultrahigh critical current density of 2 mA cm-2 with 20 times enhanced exchange current, and 4.5 V Li//LiCoO2 ASSLBs exhibit a capacity retention of 80% after 200 cycles, superior to reported results. The synergistic anion decomposition, yielding pure lithium-ion conductive electrode/SE interfaces containing Li3PO4 and LixPOFy, depresses adverse side reactions and breaks sluggish ionic transport. This work explicitly demonstrates the utility of coordination regulations in achieving enhanced lithium-ion transport for long-lifespan high-voltage ASSLBs.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"46 1","pages":"e14236"},"PeriodicalIF":26.8000,"publicationDate":"2025-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202514236","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The sluggish lithium-ion transport in high-concentration polyethylene oxide (hc-PEO) solid electrolytes (SEs) and across the electrode/hc-PEO SE interface causes failure of high-voltage PEO-based all-solid-state lithium batteries (ASSLBs). Here, bi-salt hc-PEO SEs with TFSI- and PO2F2 - are creatively fabricated, where PO2F2 - possesses higher Li+─PO2F2 - bonding energy, balancing anion-Li+-EO interactions by weakening Li+-EO interaction while strengthening Li+-anion interaction, and decomposes at electrode/SE interfaces, enabling facilitated lithium-ion transport in the SE and across interfaces. Li+ interactions in anion-Li+-EO aggregations are counterintuitively optimized when two anions reach an approximate molar ratio. Consequently, the ionic conductivity at 60 °C is enhanced by ≈20 times to 1.2 × 10-4 S cm-1, compared to hc-PEO SE with LiTFSI (5.8 × 10-6 S cm-1) or dominated LiPO2F2 (5.2 × 10-6 S cm-1). Using the bi-salt hc-PEO SE, Li//Li cells deliver an ultrahigh critical current density of 2 mA cm-2 with 20 times enhanced exchange current, and 4.5 V Li//LiCoO2 ASSLBs exhibit a capacity retention of 80% after 200 cycles, superior to reported results. The synergistic anion decomposition, yielding pure lithium-ion conductive electrode/SE interfaces containing Li3PO4 and LixPOFy, depresses adverse side reactions and breaks sluggish ionic transport. This work explicitly demonstrates the utility of coordination regulations in achieving enhanced lithium-ion transport for long-lifespan high-voltage ASSLBs.
平衡阴离子-阳离子- eo相互作用实现4.5 v级peo基全固态锂电池的超高锂离子输运
锂离子在高浓度聚氧化物(hc-PEO)固体电解质(SEs)中以及在电极/hc-PEO SE界面上的缓慢传输导致高压聚氧化物全固态锂电池(ASSLBs)失效。本文创造性地制备了具有TFSI-和PO2F2 -的双盐hc-PEO SEs,其中PO2F2 -具有更高的Li+─PO2F2 -键能,通过减弱Li+- eo相互作用而增强Li+-阴离子相互作用来平衡阴离子-Li+- eo相互作用,并在电极/SE界面分解,促进了锂离子在SE和跨界面的传输。当两个阴离子达到近似的摩尔比时,阴离子-Li+-EO聚集中Li+相互作用的优化与直觉相反。因此,与LiTFSI (5.8 × 10-6 S cm-1)或LiPO2F2 (5.2 × 10-6 S cm-1)的hc-PEO SE相比,60℃时的离子电导率提高了约20倍,达到1.2 × 10-4 S cm-1。使用双盐hc-PEO SE, Li//Li电池提供了2 mA cm-2的超高临界电流密度,交换电流增强了20倍,并且4.5 V Li//LiCoO2 asslb在200次循环后的容量保持率为80%,优于报道的结果。协同阴离子分解,产生含Li3PO4和LixPOFy的纯锂离子导电电极/SE界面,抑制了不良副反应,打破了缓慢的离子传输。这项工作明确地证明了协调规则在实现长寿命高压asslb增强锂离子传输方面的效用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信